Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 11(3): e0151041, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950694

RESUMEN

Poly(ADP-ribose) polymerase 1 (PARP1) is a key player in DNA repair, genomic stability and cell survival and it emerges as a highly relevant target for cancer therapies. To deepen our understanding of PARP biology and mechanisms of action of PARP1-targeting anti-cancer compounds, we generated a novel PARP1-affinity reagent, active both in vitro and in live cells. This PARP1-biosensor is based on a PARP1-specific single-domain antibody fragment (~ 15 kDa), termed nanobody, which recognizes the N-terminus of human PARP1 with nanomolar affinity. In proteomic approaches, immobilized PARP1 nanobody facilitates quantitative immunoprecipitation of functional, endogenous PARP1 from cellular lysates. For cellular studies, we engineered an intracellularly functional PARP1 chromobody by combining the nanobody coding sequence with a fluorescent protein sequence. By following the chromobody signal, we were for the first time able to monitor the recruitment of endogenous PARP1 to DNA damage sites in live cells. Moreover, tracing of the sub-nuclear translocation of the chromobody signal upon treatment of human cells with chemical substances enables real-time profiling of active compounds in high content imaging. Due to its ability to perform as a biosensor at the endogenous level of the PARP1 enzyme, the novel PARP1 nanobody is a unique and versatile tool for basic and applied studies of PARP1 biology and DNA repair.


Asunto(s)
Poli(ADP-Ribosa) Polimerasas/metabolismo , Anticuerpos de Dominio Único/inmunología , Resonancia por Plasmón de Superficie/métodos , Especificidad de Anticuerpos , Línea Celular , Supervivencia Celular , ADN/genética , ADN/metabolismo , Epítopos/inmunología , Humanos , Inmunoprecipitación , Imagen Molecular , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/química , Poli(ADP-Ribosa) Polimerasas/inmunología , Estructura Terciaria de Proteína , Transporte de Proteínas
2.
Phys Biol ; 12(6): 066005, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26595336

RESUMEN

Many proteins involved in detection, signalling and repair of DNA double-strand breaks (DSB) accumulate in large number in the vicinity of DSB sites, forming so called foci. Emerging evidence suggests that these foci are sub-divided in structural or functional domains. We use stimulated emission depletion (STED) microscopy to investigate localization of mediator protein 53BP1 and recombination factor Rad51 after irradiation of cells with low linear energy transfer (LET) protons or high LET carbon ions. With a resolution better than 100 nm, STED microscopy and image analysis using a newly developed analyzing algorithm, the reduced product of the differences from the mean, allowed us to demonstrate that with both irradiation types Rad51 occupies spherical regions of about 200 nm diameter. These foci locate within larger 53BP1 accumulations in regions of local 53BP1 depletion, similar to what has been described for the localization of Brca1, CtIP and RPA. Furthermore, localization relative to 53BP1 and size of Rad51 foci was not different after irradiation with low and high LET radiation. As expected, 53BP1 foci induced by low LET irradiation mostly contained one Rad51 focal structure, while after high LET irradiation, most foci contained >1 Rad51 accumulation.


Asunto(s)
Carbono/química , Roturas del ADN de Doble Cadena/efectos de la radiación , Péptidos y Proteínas de Señalización Intracelular/química , Transferencia Lineal de Energía , Protones , Recombinasa Rad51/química , Proteínas de Ciclo Celular/química , Reparación del ADN , Células HeLa , Humanos , Iones/química , Proteína 1 de Unión al Supresor Tumoral P53
3.
Radiat Oncol ; 10: 42, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25880907

RESUMEN

Ion microbeams are important tools in radiobiological research. Still, the worldwide number of ion microbeam facilities where biological experiments can be performed is limited. Even fewer facilities combine ion microirradiation with live-cell imaging to allow microscopic observation of cellular response reactions starting very fast after irradiation and continuing for many hours. At SNAKE, the ion microbeam facility at the Munich 14 MV tandem accelerator, a large variety of biological experiments are performed on a regular basis. Here, recent developments and ongoing research projects at the ion microbeam SNAKE are presented with specific emphasis on live-cell imaging experiments. An overview of the technical details of the setup is given, including examples of suitable biological samples. By ion beam focusing to submicrometer beam spot size and single ion detection it is possible to target subcellular structures with defined numbers of ions. Focusing of high numbers of ions to single spots allows studying the influence of high local damage density on recruitment of damage response proteins.


Asunto(s)
Células/metabolismo , Células/efectos de la radiación , Imagen Molecular/instrumentación , Aceleradores de Partículas/instrumentación , Radiobiología/instrumentación , Humanos , Iones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...