Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(1): 269-279, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38153417

RESUMEN

Contaminated sediments are ubiquitous repositories of pollutants and cause substantial environmental risks. Results of sediment bioassays remain difficult to interpret, however, as observed effects may be caused by a variety of (un)known stressors. This study aimed therefore to isolate the effects of hydrophobic organic contaminants from other (non)chemical stressors present in contaminated sediments, by employing a newly developed passive sampling-passive dosing (PSPD) test. The results showed that equilibrium partitioning between pesticides or polyaromatic hydrocarbons (PAHs) in contaminated sediments and a silicone rubber (SR) passive sampler was achieved after 1-3 days. Chlorpyrifos concentrations in pore water of spiked sediment matched very well with concentrations released from the SR into an aqueous test medium, showing that SR can serve as a passive dosing device. Subjecting the 96 h PSPD laboratory bioassay with nonbiting midge (Chironomus riparius) larvae to field-collected sediments showed that at two locations, concentrations of the hydrophobic organic contaminant mixtures were high enough to affect the test organisms. In conclusion, the developed PSPD test was able to isolate the effects of hydrophobic organic contaminants and provides a promising simplified building block for a suite of PSPD tests that after further validation could be used to unravel the contribution of hydrophobic organic chemicals to sediment ecotoxicity.


Asunto(s)
Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química , Monitoreo del Ambiente/métodos , Agua/química , Larva
2.
Environ Sci Process Impacts ; 25(7): 1238-1251, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37350243

RESUMEN

Surfactants are a class of chemicals released in large quantities to water, and therefore bioconcentration in fish is an important component of their safety assessment. Their structural diversity, which encompasses nonionic, anionic, cationic and zwitterionic molecules with a broad range of lipophilicity, makes their evaluation challenging. A strong influence of environmental pH adds a further layer of complexity to their bioconcentration assessment. Here we present a framework that penetrates this complexity. Using simple equations derived from current understanding of the relevant underlying processes, we plot the key bioconcentration parameters (uptake rate constant, elimination rate constant and bioconcentration factor) as a function of its membrane lipid/water distribution ratio and the neutral fraction of the chemical in water at pH 8.1 and at pH 6.1. On this chemical space plot, we indicate boundaries at which four resistance terms (perfusion with water, transcellular, paracellular, and perfusion with blood) limit transport of surfactants across the gills. We then show that the bioconcentration parameters predicted by this framework align well with in vivo measurements of anionic, cationic and nonionic surfactants in fish. In doing so, we demonstrate how the framework can be used to explore expected differences in bioconcentration behavior within a given sub-class of surfactants, to assess how pH will influence bioconcentration, to identify the underlying processes governing bioconcentration of a particular surfactant, and to discover knowledge gaps that require further research. This framework for amphiphilic chemicals may function as a template for improved understanding of the accumulation potential of other ionizable chemicals of environmental concern, such as pharmaceuticals or dyes.


Asunto(s)
Peces , Tensoactivos , Contaminantes Químicos del Agua , Tensoactivos/química , Tensoactivos/metabolismo , Peces/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Branquias/metabolismo
3.
Environ Sci Process Impacts ; 25(3): 621-647, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779707

RESUMEN

The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Herbicidas , Estupor , Contaminantes Químicos del Agua , Animales , Agua , Invertebrados , Peces , Herbicidas/toxicidad , Lípidos , Contaminantes Químicos del Agua/toxicidad
5.
Environ Sci Technol ; 56(10): 6305-6314, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35467837

RESUMEN

Bioconcentration factors (BCFs) in rainbow trout were measured for 10 anionic surfactants with a range of alkyl chain lengths and different polar head groups. The BCFs ranged from 0.04 L kg-1 ww (for C10SO3) to 1370 L kg-1 ww (C16SO3). There was a strong correlation between the log BCF and log membrane lipid-water distribution ratio (DMLW, r2 = 0.96), and biotransformation was identified as the dominant elimination mechanism. The strong positive influence of DMLW on BCF was attributed to two phenomena: (i) increased partitioning from water into the epithelial membrane of the gill, leading to more rapid diffusion across this barrier and more rapid uptake, and (ii) increased sequestration of the surfactant body burden into membranes and other body tissues, resulting in lower freely dissolved concentrations available for biotransformation. Estimated whole-body in vivo biotransformation rate constants kB-BCF are within a factor three of rate constants estimated from S9 in vitro assays for six of the eight test chemicals for which kB-BCF could be determined. A model-based assessment indicated that the hepatic clearance rate of freely dissolved chemicals was similar for the studied surfactants. The dataset will be useful for evaluation of in silico and in vitro methods to assess bioaccumulation.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Biotransformación , Oncorhynchus mykiss/metabolismo , Tensoactivos/metabolismo , Agua/metabolismo , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35353522

RESUMEN

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Asunto(s)
Compuestos Orgánicos , Contaminantes del Suelo , Adsorción , Carbono/química , Compuestos Orgánicos/química , Suelo , Contaminantes del Suelo/análisis , Agua/química
7.
Environ Sci Process Impacts ; 23(12): 1930-1948, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34787154

RESUMEN

Fish bioconcentration factors (BCFs) are commonly used in chemical hazard and risk assessment. For neutral organic chemicals BCFs are positively correlated with the octanol-water partition ratio (KOW), but KOW is not a reliable parameter for surfactants. Membrane lipid-water distribution ratios (DMLW) can be accurately measured for all kinds of surfactants, using phospholipid-based sorbents. This study first demonstrates that DMLW values for ionic surfactants are more than 100 000 times higher than the partition ratio to fish-oil, representing neutral storage lipid. A non-ionic alcohol ethoxylate surfactant showed almost equal affinity for both lipid types. Accordingly, a baseline screening BCF value for surfactants (BCFbaseline) can be approximated for ionic surfactants by multiplying DMLW by the phospholipid fraction in tissue, and for non-ionic surfactants by multiplying DMLW by the total lipid fraction. We measured DMLW values for surfactant structures, including linear and branched alkylbenzenesulfonates, an alkylsulfoacetate and an alkylethersulfate, bis(2-ethylhexyl)-surfactants (e.g., docusate), zwitterionic alkylbetaines and alkylamine-oxides, and a polyprotic diamine. Together with sixty previously published DMLW values for surfactants, structure-activity relationships were derived to elucidate the influence of surfactant specific molecular features on DMLW. For 23 surfactant types, we established the alkyl chain length at which BCFbaseline would exceed the EU REACH bioaccumulation (B) threshold of 2000 L kg-1, and would therefore require higher tier assessments to further refine the BCF estimate. Finally, the derived BCFbaseline are compared with measured literature in vivo BCF data where available, suggesting that refinements, most notably reliable estimates of biotransformation rates, are needed for most surfactant types.


Asunto(s)
Tensoactivos , Contaminantes Químicos del Agua , Animales , Bioacumulación , Peces , Fosfolípidos , Contaminantes Químicos del Agua/análisis
8.
Environ Toxicol Chem ; 40(11): 3123-3136, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34379820

RESUMEN

Biotransformation may substantially reduce the extent to which organic environmental contaminants accumulate in fish. Presently, however, relatively little is known regarding the biotransformation of ionized chemicals, including cationic surfactants, in aquatic organisms. To address this deficiency, a rainbow trout liver S9 substrate depletion assay (RT-S9) was used to measure in vitro intrinsic clearance rates (CLint ; ml min-1 g liver-1 ) for 22 cationic surfactants that differ with respect to alkyl chain length and degree of methylation on the charged nitrogen atom. None of the quaternary N,N,N-trimethylalkylammonium compounds exhibited significant clearance. Rapid clearance was observed for N,N-dimethylalkylamines, and slower rates of clearance were measured for N-methylalkylamine analogs. Clearance rates for primary alkylamines were generally close to or below detectable levels. For the N-methylalkylamines and N,N-dimethylalkylamines, the highest CLint values were measured for C10 -C12 homologs; substantially lower clearance rates were observed for homologs containing shorter or longer carbon chains. Based on its cofactor dependency, biotransformation of C12 -N,N-dimethylamine appears to involve one or more cytochrome P450-dependent reaction pathways, and sulfonation. On a molar basis, N-demethylation metabolites accounted for up to 25% of the N,N-dimethylalkylamines removed during the 2-h assay, and up to 55% of the removed N-methylalkylamines. These N-demethylation products possess greater metabolic stability in the RT-S9 assay than the parent structures from which they derive and may contribute to the overall risk of ionizable alkylamines. The results of these studies provide a set of consistently determined CLint values that may be extrapolated to whole trout to inform in silico bioaccumulation assessments. Environ Toxicol Chem 2021;40:3123-3136. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Oncorhynchus mykiss , Animales , Biotransformación , Hígado/metabolismo , Tasa de Depuración Metabólica , Oncorhynchus mykiss/metabolismo , Tensoactivos/metabolismo
9.
Environ Sci Technol ; 55(13): 8888-8897, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34133133

RESUMEN

Cationic surfactants have a strong affinity to sorb to phospholipid membranes and thus possess an inherent potential to bioaccumulate, but there are few measurements of bioconcentration in fish. We measured the bioconcentration of 10 alkylamines plus two quaternary ammonium compounds in juvenile rainbow trout at pH 7.6, and repeated the measurements at pH 6.2 for 6 of these surfactants. The BCF of the amines with chain lengths ≤ C14 was positively correlated with chain length, increasing ∼0.5 log units per carbon. Their BCF was also pH dependent and approximately proportional to the neutral fraction of the amine in the water. The BCFs of the quaternary ammonium compounds showed no pH dependence and were >2 orders of magnitude less than for amines of the same chain length at pH 7.6. This indicates that systemic uptake of permanently charged cationic surfactants is limited. The behavior of the quaternary ammonium compounds and the two C16 amines studied was consistent with previous observations that these surfactants accumulate primarily to the gills and external surfaces of the fish. At pH 7.6 the BCF exceeded 2000 L kg-1 for 4 amines with chains ≥ C13, showing that bioconcentration can be considerable for some longer chained cationic surfactants.


Asunto(s)
Oncorhynchus mykiss , Contaminantes Químicos del Agua , Animales , Bioacumulación , Branquias , Tensoactivos , Contaminantes Químicos del Agua/análisis
10.
Environ Toxicol Chem ; 40(1): 148-161, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045099

RESUMEN

The activity of a trout liver S9 substrate depletion assay has been shown to decline over time, presumably due to proteolytic degradation of biotransformation enzymes. To address this problem, assay performance was evaluated following the addition of phenylmethylsulfonyl fluoride (PMSF) or a general-purpose protease inhibitor cocktail to liver homogenization buffers and/or S9 reaction mixtures. Addition of PMSF to liver homogenization buffers and/or S9 reaction mixtures had little or no effect on clearance of phenanthrene, a model cytochrome P450 substrate, in short-term (25 or 30 min) depletion experiments but resulted in significant improvements in retention of this initial activity over time. The protease inhibitor cocktail strongly inhibited initial activity when added to homogenization buffers or reaction mixtures. Taking into consideration potential effects on liver carboxylesterases, the treatment approach determined to be optimal was addition of 10 µM PMSF to the S9 reaction mixture. Addition of 10 µM PMSF to the mixture resulted in significantly higher rates of phenanthrene clearance in 2-h incubations relative to those obtained in the absence of PMSF and a 6-fold increase in the working lifetime of the preparation. The results of a statistical power analysis suggest that by increasing the working lifetime of the assay, addition of PMSF to the reaction mixture could result in substantially improved detection of low in vitro clearance rates when compared to current practice. These findings demonstrate the value of adding PMSF to the trout S9 preparation and may have broad implications for use of this assay to support chemical bioaccumulation assessments for fish. Environ Toxicol Chem 2021;40:148-161. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Oncorhynchus mykiss , Animales , Biotransformación , Hígado/metabolismo , Tasa de Depuración Metabólica , Fluoruro de Fenilmetilsulfonilo/metabolismo
11.
Chemosphere ; 245: 125643, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31877460

RESUMEN

The cationic surfactants cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) can exert inhibitory effects on micro-organisms responsible for their biodegradation. However, under environmentally relevant exposure scenarios the presence of and sorption to organic and inorganic matter can lead to significant reduction of inhibitory effects. In our studies we investigated silica gel and seven clays as inert sorbents to mitigate these inhibitory effects in a 28 day manometric respirometry biodegradation test. CTAB was not inhibitory to the used inoculum, but we did observe that seven out of eight sorbents increased maximum attainable biodegradation, and four out of eight decreased the lag phase. The strongly inhibitory effect of CPC was successfully mitigated by most sorbents, with five out of eight allowing >50% biodegradation within 28 days. Results further indicate that bioaccessibility of the sorbed fractions in the stirred manometric test systems was higher than in calmly shaken headspace test systems. Bioaccessibility might also be limited depending on characteristics of test chemical and sorbent type, with montmorillonite and bentonite apparently providing the lowest level of bioaccessibility with CPC. Clay sorbents can thus be used as environmentally relevant sorbents to mitigate potential inhibitory effects of test chemicals, but factors that impede bioaccessibility should be considered. In addition to apparently increased bioaccessibility due to stirring, the automated manometric respirometry test systems give valuable and highly cost-effective insights into lag phase and biodegradation kinetics; information that is especially relevant for test chemicals of gradual biodegradability.


Asunto(s)
Biodegradación Ambiental , Arcilla/química , Desinfectantes/química , Adsorción , Silicatos de Aluminio/química , Bentonita/química , Cationes , Cetilpiridinio , Tensoactivos/química
12.
Environ Sci Technol ; 53(24): 14479-14488, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31714076

RESUMEN

Sediments play an essential role in the functioning of aquatic ecosystems but simultaneously retain harmful compounds. However, sediment quality assessment methods that consider the risks caused by the combined action of all sediment-associated contaminants to benthic biota are still underrepresented in water quality assessment strategies. Significant advancements have been made in the application of effect-based methods, but methodological improvements can still advance sediment risk assessment. The present study aimed to explore such improvements by integrating effect-monitoring and chemical profiling of sediment contamination. To this end, 28 day life cycle bioassays with Chironomus riparius using intact whole sediment cores from contaminated sites were performed in tandem with explorative chemical profiling of bioavailable concentrations of groups of legacy and emerging sediment contaminants to investigate ecotoxicological risks to benthic biota. All contaminated sediments caused effects on the resilient midge C. riparius, stressing that sediment contamination is ubiquitous and potentially harmful to aquatic ecosystems. However, bioassay responses were not in line with any of the calculated toxicity indices, suggesting that toxicity was caused by unmeasured compounds. Hence, this study underlines the relevance of effect-based sediment quality assessment and provides smarter ways to do so.


Asunto(s)
Chironomidae , Contaminantes Químicos del Agua , Animales , Ecosistema , Ecotoxicología , Monitoreo del Ambiente , Sedimentos Geológicos , Medición de Riesgo
13.
Ecotoxicol Environ Saf ; 182: 109417, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31302333

RESUMEN

Biodegradability studies for the cationic surfactant cetylpyridinium chloride (CPC) are hampered by inhibitory effects on inoculum at prescribed test concentrations (10-20 mg organic carbon/L). In this study, we used 14C labeled CPC in the 28 d Headspace Test (OECD 310) and demonstrated that CPC was readily biodegradable (10->60% mineralization within a 10 day window) at test concentrations 0.006-0.3 mg/L with CPC as single substrate. Biodegradation efficiency was comparable over this concentration range. CPC inhibited degradation at 1 mg/L and completely suppressed inoculum activity at 3 mg/L. In an extensive sorbent modified biodegradation study we evaluated the balance between CPC bioaccessibility and toxicity. A non-inhibitory concentration of 0.1 mg/L CPC was readily biodegradable with 83% sorbed to SiO2, while biodegradation was slower when 96% was sorbed. SiO2 mitigated inhibitory effects of 1 mg/L CPC, reaching >60% biodegradation within 28 d; inhibitory effects were also mitigated by addition of commercial clay powder (illite) but this was primarily reflected by a reduced lag phase. At 10 mg/L CPC SiO2 was still able to mitigate inhibitory effects, but bioaccessibility seemed limited as only 20% biodegradation was reached. Illite limited bioaccessibility more strongly and was not able to sustain biodegradation at 10 mg/L CPC.


Asunto(s)
Antiinfecciosos Locales/metabolismo , Biodegradación Ambiental , Cetilpiridinio/metabolismo , Minerales , Dióxido de Silicio , Tensoactivos
14.
Chem Res Toxicol ; 32(6): 1103-1114, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31012305

RESUMEN

The nominal concentration is generally used to express concentration-effect relationships in in vitro toxicity assays. However, the nominal concentration does not necessarily represent the exposure concentration responsible for the observed effect. Surfactants accumulate at interphases and likely sorb to in vitro system components such as serum protein and well plate plastic. The extent of sorption and the consequences of this sorption on in vitro readouts is largely unknown for these chemicals. The aim of this study was to demonstrate the effect of sorption to in vitro components on the observed cytotoxic potency of benzalkonium chlorides (BAC) varying in alkyl chain length (6-18 carbon atoms, C6-18) in a basal cytotoxicity assay with the rainbow trout gill cell line (RTgill-W1). Cells were exposed for 48 h in 96-well plates to increasing concentration of BACs in exposure medium containing 0, 60 µM bovine serum albumin (BSA) or 10% fetal bovine serum (FBS). Before and after exposure, BAC concentrations in exposure medium were analytically determined. Based on freely dissolved concentrations at the end of the exposure, median effect concentrations (EC50) decreased with increasing alkyl chain length up to 14 carbons. For BAC with alkyl chains of 12 or more carbons, EC50's based on measured concentrations after exposure in supplement-free medium were up to 25-times lower than EC50's calculated using nominal concentrations. When BSA or FBS was added to the medium, a decrease in cytotoxic potency of up to 22 times was observed for BAC with alkyl chains of eight or more carbons. The results of this study emphasize the importance of expressing the in vitro readouts as a function of a dose metric that is least influenced by assay setup to compare assay sensitivities and chemical potencies.


Asunto(s)
Compuestos de Benzalconio/farmacología , Animales , Compuestos de Benzalconio/química , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Estructura Molecular , Oncorhynchus mykiss , Relación Estructura-Actividad
15.
Chemosphere ; 222: 461-468, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30716549

RESUMEN

Biodegradation potential of cationic surfactants may be hampered by inhibition of inoculum at concentrations required to accurately measure inorganic carbon. At >0.3 mg/L cetyltrimethylammonium bromide (CTAB) negatively impacted degradation of the reference compound aniline. We used silicon dioxide (SiO2) and illite as inorganic sorbents to mitigate toxicity of CTAB by lowering freely dissolved concentrations. In an OECD Headspace Test we tested whether 16.8 mg/L CTAB was readily biodegradable in presence of two concentrations of SiO2 and illite. SiO2 adsorbed 85% and 98% CTAB, resulting in concentrations of 2.5 and 0.34 mg/L, mineralized to CO2 >60% within 16 and 23 d, respectively. With 89% and 99% sorbed to illite, 60% mineralization was reached within 9 and 23 d, respectively. However, higher sorbent concentrations increased time needed to reach >60% mineralization. Thus, desorption kinetics likely decreased bioaccessibility. It is therefore essential to determine appropriate concentrations of mitigating sorbents to render a Headspace Test based on carbon analysis suitable to determine ready biodegradability of compounds which might inhibit inoculum. This would avoid use of expensive radiolabeled compounds. However, high sorbent concentrations can reduce bioaccessibility and limit degradation kinetics, particularly for relatively toxic substances that require strong mitigation.


Asunto(s)
Cetrimonio/farmacocinética , Tensoactivos/farmacocinética , Adsorción , Compuestos de Anilina/farmacocinética , Biodegradación Ambiental , Disponibilidad Biológica , Radioisótopos de Carbono/análisis , Cationes , Cetrimonio/toxicidad , Contaminantes Ambientales/farmacocinética , Contaminantes Ambientales/toxicidad , Cinética , Minerales/química , Dióxido de Silicio/química
16.
Environ Sci Technol ; 53(2): 760-770, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30572703

RESUMEN

This study determined the sorption affinity to artificial phospholipid membranes ( KMW) for series of perfluorinated carboxylates (PFCAs), perfluorinated sulfonates (PFSAs), alkyl sulfates (C xSO4), and 1-alkanesulfonates (C xSO3). A sorbent dilution assay with solid supported lipid membranes (SSLM) showed consistent CF2 unit increments of 0.59, and CH2 unit increments of 0.53, for the log KMW of perfluorinated and hydrogenated anions, respectively. PFSAs sorbed 0.90 log units stronger than analogue PFCAs; C xSO4 sorbed 0.75 log units stronger than analogue C xSO3 anions. The log KMW values for the octyl analogues increase in the order H(CH2)8SO3- (1.74) < H(CH2)8SO4- (2.58) < F(CF2)8CO2- (PFNA, 4.04) < F(CF2)8SO3- (PFOS, 4.88). Intrinsic partition ratios determined on a phospholipid coated HPLC column (IAM-HPLC) closely aligned with SSLM KMW values. COSMO-RS based molecular calculations of KMW aligned with SSLM KMW values for hydrogenated anions with C8-C14 alkyl chains but strongly underestimated CF2 and CH2 unit increments for C4-C8 based anions. Dividing the critical narcotic membrane burden of 100 mmol/kg by the experimental KMW predicts lethal baseline toxicity concentrations (LC50,narc). The LC50,narc coincides with the lowest reported acute LC50 values for several anionic surfactants but were on average about an order of magnitude lower.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Aniones , Medición de Riesgo , Sulfatos , Agua
17.
Chem Res Toxicol ; 31(8): 646-657, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-29939727

RESUMEN

Cellular uptake kinetics are key for understanding time-dependent chemical exposure in in vitro cell assays. Slow cellular uptake kinetics in relation to the total exposure time can considerably reduce the biologically effective dose. In this study, fluorescence microscopy combined with automated image analysis was applied for time-resolved quantification of cellular uptake of 10 neutral, anionic, cationic, and zwitterionic fluorophores in two reporter gene assays. The chemical fluorescence in the medium remained relatively constant during the 24-h assay duration, emphasizing that the proteins and lipids in the fetal bovine serum (FBS) supplemented to the assay medium represent a large reservoir of reversibly bound chemicals with the potential to compensate for chemical depletion by cell uptake, growth, and sorption to well materials. Hence FBS plays a role in stabilizing the cellular dose in a similar way as polymer-based passive dosing, here we term this process as serum-mediated passive dosing (SMPD). Neutral chemicals accumulated in the cells up to 12 times faster than charged chemicals. Increasing medium FBS concentrations accelerated uptake due to FBS-facilitated transport but led to lower cellular concentrations as a result of increased sorption to medium proteins and lipids. In vitro cell exposure results from the interaction of several extra- and intracellular processes, leading to variable and time-dependent exposure between different chemicals and assay setups. The medium FBS plays a crucial role for the thermodynamic equilibria as well as for the cellular uptake kinetics, hence influencing exposure. However, quantification of cellular exposure by an area under the curve (AUC) analysis illustrated that, for the evaluated bioassay setup, current in vitro exposure models that assume instantaneous equilibrium between medium and cells still reflect a realistic exposure because the AUC was typically reduced less than 20% compared to the cellular dose that would result from instantaneous equilibrium.


Asunto(s)
Sustancias Peligrosas/farmacocinética , Microscopía Fluorescente/métodos , Animales , Área Bajo la Curva , Línea Celular , Línea Celular Tumoral , Medios de Cultivo , Genes Reporteros , Humanos , Técnicas In Vitro , Termodinámica
18.
Anal Chim Acta ; 1002: 26-38, 2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29306411

RESUMEN

Working with and analysis of cationic surfactants can be problematic since aqueous concentrations are difficult to control, both when taking environmental aqueous samples as well as performing laboratory work with spiked concentrations. For a selection of 32 amine based cationic surfactants (including C8- to C18-alkylamines, C14-dialkyldimethylammonium, C8-tetraalkylammonium, benzalkonium and pyridinium compounds), the extraction from aqueous samples was studied in detail. Aqueous concentrations were determined using solid phase extraction (SPE; 3 mL/60 mg Oasis WCX-SPE cartridges) with recoveries of ≥80% for 30 compounds, and ≥90% for 16 compounds. Sorption to glassware was evaluated in 120 mL flasks, 40 mL vials and 1.5 mL autosampler vials, using 15 mM NaCl, where the glass binding of simple primary amines and quaternary ammonium compounds increased with alkyl chain length. Sorption to the outside of pipette tips (≤20% of total amount in solution) when sampling aqueous solutions may interfere with accurate measurements. Polyacrylate solid phase microextraction (PA-SPME) fibers with two coating thicknesses (7 and 35 µm) were tested as potential extraction devices. The uptake kinetics, pH-dependence and influence of ionic strength on sorption to PA fibers were studied. Changing medium from 100 mM Na+ to 10 mM Ca2+ decreases Kfw with one order of magnitude. Results indicate that for PA-SPME neutral amines are absorbed rather than adsorbed, although the exact sorption mechanism remains to be elucidated. Further research remains necessary to establish a definitive applicability domain for PA-SPME. However, results indicate that alkyl chain lengths ≥14 carbon atoms and multiple alkyl chains become problematic. A calibration curve should always be measured together with the samples. In conclusion, it seems that for amine based surfactants PA-SPME does not provide the reliability and reproducibility necessary for precise sorption experiments, specifically for alkyl chain lengths beyond 12 carbon atoms.

19.
Environ Sci Technol ; 51(5): 2890-2898, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28187261

RESUMEN

This study reports the distribution coefficient between phospholipid bilayer membranes and phosphate buffered saline (PBS) medium (DMW,PBS) for 19 cationic surfactants. The method used a sorbent dilution series with solid supported lipid membranes (SSLMs). The existing SSLM protocol, applying a 96 well plate setup, was adapted to use 1.5 mL glass autosampler vials instead, which facilitated sampling and circumvented several confounding loss processes for some of the cationic surfactants. About 1% of the phospholipids were found to be detached from the SSLM beads, resulting in nonlinear sorption isotherms for compounds with log DMW values above 4. Renewal of the medium resulted in linear sorption isotherms. DMW values determined at pH 5.4 demonstrated that cationic surfactant species account for the observed DMW,PBS. Log DMW,PBS values above 5.5 are only experimentally feasible with lower LC-MS/MS detection limits and/or concentrated extracts of the aqueous samples. Based on the number of carbon atoms, dialkylamines showed a considerably lower sorption affinity than linear alkylamine analogues. These SSLM results closely overlapped with measurements on a chromatographic tool based on immobilized artificial membranes (IAM-HPLC) and with quantum-chemistry based calculations with COSMOmic. The SSLM data suggest that IAM-HPLC underestimates the DMW of ionized primary and secondary alkylamines by 0.8 and 0.5 log units, respectively.


Asunto(s)
Células Artificiales , Membranas Artificiales , Fosfolípidos/química , Tensoactivos , Espectrometría de Masas en Tándem
20.
Environ Sci Technol ; 50(23): 12722-12731, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934284

RESUMEN

Greater knowledge of biotransformation rates for ionizable organic compounds (IOCs) in fish is required to properly assess the bioaccumulation potential of many environmentally relevant contaminants. In this study, we measured in vitro hepatic clearance rates for 50 IOCs using a pooled batch of liver S9 fractions isolated from rainbow trout (Oncorhynchus mykiss). The IOCs included four types of strongly ionized acids (carboxylates, phenolates, sulfonates, and sulfates), three types of strongly ionized bases (primary, secondary, tertiary amines), and a pair of quaternary ammonium compounds (QACs). Included in this test set were several surfactants and a series of beta-blockers. For linear alkyl chain IOC analogues, biotransformation enzymes appeared to act directly on the charged terminal group, with the highest clearance rates for tertiary amines and sulfates and no clearance of QACs. Clearance rates for C12-IOCs were higher than those for C8-IOC analogues. Several analogue series with multiple alkyl chains, branched alkyl chains, aromatic rings, and nonaromatic rings were evaluated. The likelihood of multiple reaction pathways made it difficult to relate all differences in clearance to specific molecular features the tested IOCs. Future analysis of primary metabolites in the S9 assay is recommended to further elucidate biotransformation pathways for IOCs in fish.


Asunto(s)
Hígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animales , Biotransformación , Extractos Hepáticos/metabolismo , Compuestos Orgánicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA