Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Chem Rev ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842266

This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions. Many of the key phenomena related to the behavior of irradiated systems are very similar and can be understood based on the same fundamental theoretical principles and computational approaches. The multiscale nature of such phenomena requires the quantitative description of the radiation-induced effects occurring at different spatial and temporal scales, ranging from the atomic to the macroscopic, and the interlinks between such descriptions. The multiscale nature of the effects and the similarity of their manifestation in systems of different origins necessarily bring together different disciplines, such as physics, chemistry, biology, materials science, nanoscience, and biomedical research, demonstrating the numerous interlinks and commonalities between them. This research field is highly relevant to many novel and emerging technologies and medical applications.

2.
Opt Express ; 30(1): 389-402, 2022 Jan 03.
Article En | MEDLINE | ID: mdl-35201216

In this study, we propose two full-optical-setup and single-shot measurable approaches for complete characterization of attosecond pulses from surface high harmonic generation (SHHG): SHHG-SPIDER (spectral phase interferometry for direct electric field reconstruction) and SHHG-SEA-SPIDER (spatially encoded arrangement for SPIDER). 1D- and 2D-EPOCH PIC (particle-in-cell) simulations were performed to generate the attosecond pulses from relativistic plasmas under different conditions. Pulse trains dominated by single isolated peak as well as complex pulse train structures are extensively discussed for both methods, which showed excellent accuracy in the complete reconstruction of the attosecond field with respect to the direct Fourier transformed result. Kirchhoff integral theorem has been used for the near-to-far-field transformation. This far-field propagation method allows us to relate these results to potential experimental implementations of the scheme. The impact of comprehensive experimental parameters for both apparatus, such as spectral shear, spatial shear, cross-angle, time delay, and intensity ratio between the two replicas has been investigated thoroughly. These methods are applicable to complete characterization for SHHG attosecond pulses driven by a few to hundreds of terawatts femtosecond laser systems.

3.
Opt Lett ; 45(15): 4248-4251, 2020 Aug 01.
Article En | MEDLINE | ID: mdl-32735269

We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation. The calibration, together with simulation results, shows an accuracy beyond λ/39 root mean square (rms) at λ=32nm. The sensor is suitable for wave front measurement in the 10 nm to 45 nm spectral regime. This compact wave front sensor is high-vacuum compatible and designed for in situ operations, allowing wide applications for up-to-date EUV sources or high-NA EUV optics.

4.
Rev Sci Instrum ; 85(11): 113302, 2014 Nov.
Article En | MEDLINE | ID: mdl-25430105

Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution.

...