Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 24
1.
Cell Death Discov ; 9(1): 94, 2023 Mar 13.
Article En | MEDLINE | ID: mdl-36914635

Oxeiptosis is a recently identified reactive oxygen species (ROS)-sensitive, caspase independent, non-inflammatory regulated cell death pathway. The activation of Kelch-like ECH-associated protein 1-Phosphoglycerate mutase 5-Apoptosis inducing factor mitochondria associated 1 (KEAP1-PGAM5-AIFM1) pathway is the key signaling event in the execution of oxeiptosis. In the present study, we demonstrate that sanguinarine (SNG), a quaternary benzophenanthridine alkaloid, induces oxeiptosis in human colorectal cancer (CRC) cells via ROS, specifically hydrogen peroxide (H2O2)-dependent activation of KEAP1-PGAM5-AIFM1 signaling axis. Whilst, knockdown of KEAP1, PGAM5, and AIFM1 largely abolishes SNG-induced oxeiptosis, hence reinforcing the importance of the role of this pathway in the SNG-mediated cytotoxicity. Moreover, extracellular addition of H2O2 sensitizes SNG-induced oxeiptosis in CRC cells, while removal of intracellular ROS by ROS scavengers, not only alleviated the overproduction of ROS caused by SNG, but also reversed the biochemical events associated with oxeiptosis. Finally, in vivo study demonstrates that SNG effectively reduces the tumor growth in HT-29 xenograft mouse model through features associated with oxeiptosis. This study highlights oxeiptosis as a novel tumor suppressive mechanism and further investigation of the role of oxeiptosis in cancer treatment is warranted.

2.
Plants (Basel) ; 12(1)2022 Dec 20.
Article En | MEDLINE | ID: mdl-36616136

The studies on the prevalence and genetic diversity of begomoviruses in Saudi Arabia are minimal. In this study, field-grown symptomatic tomato and muskmelon plants were collected, and initially, begomovirus infection was confirmed by the core coat protein sequences. Four tomato and two muskmelon plants with viral infections were further evaluated for Illumina MiSeq sequencing, and twelve sequences (2.7-2.8 kb) equivalent to the full-length DNA-A or DNA-B components of begomoviruses were obtained along with eight sequences (~1.3-1.4 kb) equivalent to the begomovirus-associated DNA-satellite components. Four begomovirus sequences obtained from tomato plants were variants of tomato yellow leaf curl virus (TYLCV) with nt sequence identities of 95.3-100%. Additionally, two tomato plants showed a mixed infection of TYLCV and cotton leaf curl Gezira virus (CLCuGeV), okra yellow crinkle Cameroon alphasatellite (OYCrCMA), and okra leaf curl Oman betasatellite (OLCuOMB). Meanwhile, from muskmelon plants, two sequences were closely related (99-99.6%) to the tomato leaf curl Palampur virus (ToLCPalV) DNA-A, whereas two other sequences showed 97.9-100% sequence identities to DNA-B of ToLCPalV, respectively. Complete genome sequences of CLCuGeV and associated DNA-satellites were also obtained from these muskmelon plants. The nt sequence identities of the CLCuGeV, OYCrCMA, and OLCuOMB isolates obtained were 98.3-100%, 99.5-100%, and 95.6-99.7% with their respective available variants. The recombination was only detected in TYLCV and OLCuOMB isolates. To our knowledge, this is the first identification of a mixed infection of bipartite and monopartite begomoviruses associated with DNA-satellites from tomato and muskmelon in Saudi Arabia. The begomovirus variants reported in this study were clustered with Iranian isolates of respective begomovirus components in the phylogenetic dendrogram. Thus, the Iranian agroecological route can be a possible introduction of these begomoviruses and/or their associated DNA-satellites into Saudi Arabia.

3.
Int J Mol Sci ; 22(21)2021 Nov 02.
Article En | MEDLINE | ID: mdl-34769342

Exposure to microgravity affects astronauts' health in adverse ways. However, less is known about the extent to which fibroblast differentiation during the wound healing process is affected by the lack of gravity. One of the key steps of this process is the differentiation of fibroblasts into myofibroblasts, which contribute functionally through extracellular matrix production and remodeling. In this work, we utilized collagen-based three-dimensional (3D) matrices to mimic interstitial tissue and studied fibroblast differentiation under simulated microgravity (sµG). Our results demonstrated that alpha-smooth muscle actin (αSMA) expression and translocation of Smad2/3 into the cell nucleus were reduced upon exposure to sµG compared to the 1g control, which suggests the impairment of fibroblast differentiation under sµG. Moreover, matrix remodeling and production were decreased under sµG, which is in line with the impaired fibroblast differentiation. We further investigated changes on a transcriptomic level using RNA sequencing. The results demonstrated that sµG has less effect on fibroblast transcriptomes, while sµG triggers changes in the transcriptome of myofibroblasts. Several genes and biological pathways found through transcriptome analysis have previously been reported to impair fibroblast differentiation. Overall, our data indicated that fibroblast differentiation, as well as matrix production and remodeling, are impaired in 3D culture under sµG conditions.


Cell Differentiation , Extracellular Matrix/pathology , Fibroblasts/pathology , Weightlessness Simulation/adverse effects , Weightlessness , Actins/genetics , Actins/metabolism , Cell Culture Techniques, Three Dimensional , Cells, Cultured , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Humans , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad3 Protein/genetics , Smad3 Protein/metabolism
4.
Nat Commun ; 11(1): 5093, 2020 10 09.
Article En | MEDLINE | ID: mdl-33037226

The mechanisms behind the ability of Plasmodium falciparum to evade host immune system are poorly understood and are a major roadblock in achieving malaria elimination. Here, we use integrative genomic profiling and a longitudinal pediatric cohort in Burkina Faso to demonstrate the role of post-transcriptional regulation in host immune response in malaria. We report a strong signature of miRNA expression differentiation associated with P. falciparum infection (127 out of 320 miRNAs, B-H FDR 5%) and parasitemia (72 miRNAs, B-H FDR 5%). Integrative miRNA-mRNA analysis implicates several infection-responsive miRNAs (e.g., miR-16-5p, miR-15a-5p and miR-181c-5p) promoting lymphocyte cell death. miRNA cis-eQTL analysis using whole-genome sequencing data identified 1,376 genetic variants associated with the expression of 34 miRNAs (B-H FDR 5%). We report a protective effect of rs114136945 minor allele on parasitemia mediated through miR-598-3p expression. These results highlight the impact of post-transcriptional regulation, immune cell death processes and host genetic regulatory control in malaria.


Immune Evasion/genetics , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , MicroRNAs/genetics , Plasmodium falciparum/pathogenicity , Burkina Faso , Child , Child, Preschool , Gene Expression Regulation , Genome, Human , Humans , Longitudinal Studies , Parasitemia/genetics , Parasitemia/immunology , Plasmodium falciparum/immunology , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-bcl-2/genetics , RNA, Messenger/genetics , Whole Genome Sequencing
5.
Proc Natl Acad Sci U S A ; 117(44): 27445-27455, 2020 11 03.
Article En | MEDLINE | ID: mdl-33067398

Unicellular eukaryotic phytoplankton, such as diatoms, rely on microbial communities for survival despite lacking specialized compartments to house microbiomes (e.g., animal gut). Microbial communities have been widely shown to benefit from diatom excretions that accumulate within the microenvironment surrounding phytoplankton cells, known as the phycosphere. However, mechanisms that enable diatoms and other unicellular eukaryotes to nurture specific microbiomes by fostering beneficial bacteria and repelling harmful ones are mostly unknown. We hypothesized that diatom exudates may tune microbial communities and employed an integrated multiomics approach using the ubiquitous diatom Asterionellopsis glacialis to reveal how it modulates its naturally associated bacteria. We show that A. glacialis reprograms its transcriptional and metabolic profiles in response to bacteria to secrete a suite of central metabolites and two unusual secondary metabolites, rosmarinic acid and azelaic acid. While central metabolites are utilized by potential bacterial symbionts and opportunists alike, rosmarinic acid promotes attachment of beneficial bacteria to the diatom and simultaneously suppresses the attachment of opportunists. Similarly, azelaic acid enhances growth of beneficial bacteria while simultaneously inhibiting growth of opportunistic ones. We further show that the bacterial response to azelaic acid is numerically rare but globally distributed in the world's oceans and taxonomically restricted to a handful of bacterial genera. Our results demonstrate the innate ability of an important unicellular eukaryotic group to modulate select bacteria in their microbial consortia, similar to higher eukaryotes, using unique secondary metabolites that regulate bacterial growth and behavior inversely across different bacterial populations.


Bacteria/growth & development , Diatoms/metabolism , Microbiota/physiology , Phytoplankton/metabolism , Water Microbiology , Animals , Bacteria/genetics , Cinnamates/metabolism , Depsides/metabolism , Diatoms/genetics , Dicarboxylic Acids/metabolism , Gene Expression Profiling , Metabolomics , Metagenome , Metagenomics , Oceans and Seas , Phytoplankton/genetics , Secondary Metabolism/physiology , Rosmarinic Acid
6.
Sci Rep ; 10(1): 17573, 2020 10 16.
Article En | MEDLINE | ID: mdl-33067490

Familial breast cancer is estimated to account for 15-20% of all cases of breast cancer. Surveillance for familial breast cancer is well-established world-wide. However, this service does not exist in Jordan, due to the scarcity of information with regard to the genetic profiling of these patients, and therefore lack of recommendations for policy-makers. As such, patients with very strong family history of breast or ovarian cancers are not screened routinely; leading to preventable delay in diagnosis. Whole coding sequencing for BCRA1/BCRA2 using next-generation sequencing (NGS)/Ion PGM System was performed. Sanger sequencing were then used to confirm the pathogenic variants detected by NGS. In this study, 192 breast cancer patients (and 8 ovarian cancer cases) were included. The prevalence of recurrent pathogenic mutations was 14.5%, while the prevalence of newly detected mutations was 3.5%. Two novel pathogenic mutations were identified in BRCA2 genes. The common mutations in the Ashkenazi population used for screening may not apply in the Jordanian population, as previously reported mutations were not prevalent, and other new mutations were identified. These data will aid to establish a specific screening test for BRCA 1/BRCA2 in the Jordanian population.


BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genes, BRCA2 , Mutation , Ovarian Neoplasms/genetics , Adult , Age of Onset , Aged , Breast Neoplasms/epidemiology , Breast Neoplasms, Male/epidemiology , Breast Neoplasms, Male/genetics , DNA, Neoplasm/genetics , Early Detection of Cancer , Female , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Jordan/epidemiology , Male , Middle Aged , Neoplasms, Multiple Primary/epidemiology , Neoplasms, Multiple Primary/genetics , Ovarian Neoplasms/epidemiology , Young Adult
7.
BMC Bioinformatics ; 21(1): 267, 2020 Jun 29.
Article En | MEDLINE | ID: mdl-32600310

BACKGROUND: As high-throughput sequencing applications continue to evolve, the rapid growth in quantity and variety of sequence-based data calls for the development of new software libraries and tools for data analysis and visualization. Often, effective use of these tools requires computational skills beyond those of many researchers. To ease this computational barrier, we have created a dynamic web-based platform, NASQAR (Nucleic Acid SeQuence Analysis Resource). RESULTS: NASQAR offers a collection of custom and publicly available open-source web applications that make extensive use of a variety of R packages to provide interactive data analysis and visualization. The platform is publicly accessible at http://nasqar.abudhabi.nyu.edu/ . Open-source code is on GitHub at https://github.com/nasqar/NASQAR , and the system is also available as a Docker image at https://hub.docker.com/r/aymanm/nasqarall . NASQAR is a collaboration between the core bioinformatics teams of the NYU Abu Dhabi and NYU New York Centers for Genomics and Systems Biology. CONCLUSIONS: NASQAR empowers non-programming experts with a versatile and intuitive toolbox to easily and efficiently explore, analyze, and visualize their Transcriptomics data interactively. Popular tools for a variety of applications are currently available, including Transcriptome Data Preprocessing, RNA-seq Analysis (including Single-cell RNA-seq), Metagenomics, and Gene Enrichment.


High-Throughput Nucleotide Sequencing/methods , Software , Gene Expression Profiling , Genomics , Internet , Metagenomics , RNA-Seq , User-Computer Interface
8.
PLoS Genet ; 14(12): e1007846, 2018 12.
Article En | MEDLINE | ID: mdl-30557298

During neuronal development, ß-actin serves an important role in growth cone mediated axon guidance. Consistent with this notion, in vivo ablation of the ß-actin gene leads to abnormalities in the nervous system. However, whether ß-actin is involved in the regulation of neuronal gene programs is not known. In this study, we directly reprogramed ß-actin+/+ WT, ß-actin+/- HET and ß-actin-/- KO mouse embryonic fibroblast (MEFs) into chemically induced neurons (CiNeurons). Using RNA-seq analysis, we profiled the transcriptome changes among the CiNeurons. We discovered that induction of neuronal gene programs was impaired in KO CiNeurons in comparison to WT ones, whereas HET CiNeurons showed an intermediate levels of induction. ChIP-seq analysis of heterochromatin markers demonstrated that the impaired expression of neuronal gene programs correlated with the elevated H3K9 and H3K27 methylation levels at gene loci in ß-actin deficient MEFs, which is linked to the loss of chromatin association of the BAF complex ATPase subunit Brg1. Together, our study shows that heterochromatin alteration in ß-actin null MEFs impedes the induction of neuronal gene programs during direct reprograming. These findings are in line with the notion that H3K9Me3-based heterochromatin forms a major epigenetic barrier during cell fate change.


Actins/metabolism , Heterochromatin/metabolism , Neurons/cytology , Neurons/metabolism , Actins/deficiency , Actins/genetics , Animals , Cells, Cultured , Cellular Reprogramming/genetics , Epigenesis, Genetic , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Knockout Techniques , Heterochromatin/genetics , Mice
9.
iScience ; 3: 226-237, 2018 May 25.
Article En | MEDLINE | ID: mdl-30428323

In eukaryotic cells, actin regulates both cytoplasmic and nuclear functions. However, whether actin-based structures are present in the mitochondria and are involved in mitochondrial functions has not been investigated. Here, using wild-type ?-actin +/+ and knockout (KO) ?-actin ?/? mouse embryonic fibroblasts we show evidence for the defect in maintaining mitochondrial membrane potential (MMP) in ?-actin-null cells. MMP defects were associated with impaired mitochondrial DNA (mtDNA) transcription and nuclear oxidative phosphorylation (OXPHOS) gene expression. Using super-resolution microscopy we provided direct evidence on the presence of ?-actin-containing structures inside mitochondria. Large aggregates of TFAM-stained nucleoids were observed in bulb-shaped mitochondria in KO cells, suggesting defects in mitochondrial nucleoid segregation without ?-actin. The observation that mitochondria-targeted ?-actin rescued mtDNA transcription and MMP suggests an indispensable functional role of a mitochondrial ?-actin pool necessary for mitochondrial quality control.

10.
FASEB J ; 32(3): 1296-1314, 2018 03.
Article En | MEDLINE | ID: mdl-29101221

During differentiation and development, cell fate and identity are established by waves of genetic reprogramming. Although the mechanisms are largely unknown, during these events, dynamic chromatin reorganization is likely to ensure that multiple genes involved in the same cellular functions are coregulated, depending on the nuclear environment. In this study, using high-content screening of embryonic fibroblasts from a ß-actin knockout (KO) mouse, we found major chromatin rearrangements and changes in histone modifications, such as methylated histone (H)3-lysine-(K)9. Genome-wide H3K9 trimethylation-(Me)3 landscape changes correlate with gene up- and down-regulation in ß-actin KO cells. Mechanistically, we found loss of chromatin association by the Brahma-related gene ( Brg)/Brahma-associated factor (BAF) chromatin remodeling complex subunit Brg1 in the absence of ß-actin. This actin-dependent chromatin reorganization was concomitant with the up-regulation of sets of genes involved in angiogenesis, cytoskeletal organization, and myofibroblast features in ß-actin KO cells. Some of these genes and phenotypes were gained in a ß-actin dose-dependent manner. Moreover, reintroducing a nuclear localization signal-containing ß-actin in the knockout cells affected nuclear features and gene expression. Our results suggest that, by affecting the genome-wide organization of heterochromatin through the chromatin-binding activity of the BAF complex, ß-actin plays an essential role in the determination of gene expression programs and cellular identity.-Xie, X., Almuzzaini, B., Drou, N., Kremb, S., Yousif, A., Östlund Farrants, A.-K., Gunsalus, K., Percipalle, P. ß-Actin-dependent global chromatin organization and gene expression programs control cellular identity.


Actins/physiology , Cellular Reprogramming/genetics , Chromatin Assembly and Disassembly/genetics , Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Embryo, Mammalian/cytology , Fibroblasts/cytology , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Mice , Mice, Knockout
11.
Elife ; 62017 06 17.
Article En | MEDLINE | ID: mdl-28623667

To investigate the phenomic and genomic traits that allow green algae to survive in deserts, we characterized a ubiquitous species, Chloroidium sp. UTEX 3007, which we isolated from multiple locations in the United Arab Emirates (UAE). Metabolomic analyses of Chloroidium sp. UTEX 3007 indicated that the alga accumulates a broad range of carbon sources, including several desiccation tolerance-promoting sugars and unusually large stores of palmitate. Growth assays revealed capacities to grow in salinities from zero to 60 g/L and to grow heterotrophically on >40 distinct carbon sources. Assembly and annotation of genomic reads yielded a 52.5 Mbp genome with 8153 functionally annotated genes. Comparison with other sequenced green algae revealed unique protein families involved in osmotic stress tolerance and saccharide metabolism that support phenomic studies. Our results reveal the robust and flexible biology utilized by a green alga to successfully inhabit a desert coastline.


Acclimatization , Chlorophyta/genetics , Chlorophyta/physiology , Desert Climate , Genome, Microbial , Carbohydrates/analysis , Carbon/metabolism , Chlorophyta/chemistry , Metabolome , Osmotic Pressure , Palmitates/analysis , Salinity , Sodium Chloride/metabolism , Stress, Physiological , United Arab Emirates
12.
Bioinformatics ; 31(11): 1824-6, 2015 Jun 01.
Article En | MEDLINE | ID: mdl-25637556

MOTIVATION: The de novo assembly of genomes from whole- genome shotgun sequence data is a computationally intensive, multi-stage task and it is not known a priori which methods and parameter settings will produce optimal results. In current de novo assembly projects, a popular strategy involves trying many approaches, using different tools and settings, and then comparing and contrasting the results in order to select a final assembly for publication. RESULTS: Herein, we present RAMPART, a configurable workflow management system for de novo genome assembly, which helps the user identify combinations of third-party tools and settings that provide good results for their particular genome and sequenced reads. RAMPART is designed to exploit High performance computing environments, such as clusters and shared memory systems, where available. AVAILABILITY AND IMPLEMENTATION: RAMPART is available under the GPLv3 license at: https://github.com/TGAC/RAMPART.


Genomics/methods , Software , Genome , Workflow
13.
Nat Genet ; 47(3): 235-41, 2015 Mar.
Article En | MEDLINE | ID: mdl-25665008

Natural variation within species reveals aspects of genome evolution and function. The fission yeast Schizosaccharomyces pombe is an important model for eukaryotic biology, but researchers typically use one standard laboratory strain. To extend the usefulness of this model, we surveyed the genomic and phenotypic variation in 161 natural isolates. We sequenced the genomes of all strains, finding moderate genetic diversity (π = 3 × 10(-3) substitutions/site) and weak global population structure. We estimate that dispersal of S. pombe began during human antiquity (∼340 BCE), and ancestors of these strains reached the Americas at ∼1623 CE. We quantified 74 traits, finding substantial heritable phenotypic diversity. We conducted 223 genome-wide association studies, with 89 traits showing at least one association. The most significant variant for each trait explained 22% of the phenotypic variance on average, with indels having larger effects than SNPs. This analysis represents a rich resource to examine genotype-phenotype relationships in a tractable model.


Genome, Fungal , Schizosaccharomyces/genetics , Genetic Variation , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Humans , Phenotype , Polymorphism, Single Nucleotide
14.
Genome Announc ; 2(1)2014 Feb 13.
Article En | MEDLINE | ID: mdl-24526652

Lactobacillus salivarius is part of the vertebrate indigenous microbiota of the gastrointestinal tract, oral cavity, and milk. The properties associated with some L. salivarius strains have led to their use as probiotics. Here we describe the draft genome of the pig isolate L. salivarius cp400, providing insights into host-niche specialization.

15.
F1000Res ; 2: 248, 2013.
Article En | MEDLINE | ID: mdl-24627795

Modern sequencing platforms generate enormous quantities of data in ever-decreasing amounts of time. Additionally, techniques such as multiplex sequencing allow one run to contain hundreds of different samples. With such data comes a significant challenge to understand its quality and to understand how the quality and yield are changing across instruments and over time. As well as the desire to understand historical data, sequencing centres often have a duty to provide clear summaries of individual run performance to collaborators or customers. We present StatsDB, an open-source software package for storage and analysis of next generation sequencing run metrics. The system has been designed for incorporation into a primary analysis pipeline, either at the programmatic level or via integration into existing user interfaces. Statistics are stored in an SQL database and APIs provide the ability to store and access the data while abstracting the underlying database design. This abstraction allows simpler, wider querying across multiple fields than is possible by the manual steps and calculation required to dissect individual reports, e.g. "provide metrics about nucleotide bias in libraries using adaptor barcode X, across all runs on sequencer A, within the last month". The software is supplied with modules for storage of statistics from FastQC, a commonly used tool for analysis of sequence reads, but the open nature of the database schema means it can be easily adapted to other tools. Currently at The Genome Analysis Centre (TGAC), reports are accessed through our LIMS system or through a standalone GUI tool, but the API and supplied examples make it easy to develop custom reports and to interface with other packages.

16.
Nature ; 491(7424): 393-8, 2012 Nov 15.
Article En | MEDLINE | ID: mdl-23151582

For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars ∼1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.


Genome/genetics , Phylogeny , Sus scrofa/classification , Sus scrofa/genetics , Animals , Demography , Models, Animal , Molecular Sequence Data , Population Dynamics
17.
J Bacteriol ; 193(16): 4270-1, 2011 Aug.
Article En | MEDLINE | ID: mdl-21685285

Streptomyces spp. are common symbionts of the leaf-cutting ant species Acromyrmex octospinosus, which feeds on basidiomycete fungus leaf matter and harvests the lipid- and carbohydrate-rich gongylidia as a food source. A. octospinosus and other ant genera use antifungal compounds produced by Streptomyces spp. and other actinomycetes in order to help defend their fungal gardens from parasitic fungi. Herein, we report the draft genome sequence of Streptomyces strain S4, an antifungal-producing symbiont of A. octospinosus.


Ants/microbiology , Genome, Bacterial , Streptomyces/classification , Streptomyces/genetics , Animals , Molecular Sequence Data , Symbiosis
18.
J Bacteriol ; 193(9): 2351-2, 2011 May.
Article En | MEDLINE | ID: mdl-21378191

H04402 065 is one of a very small group of strains of proteolytic Clostridium botulinum that form type A5 neurotoxin. Here, we report the complete 3.9-Mb genome sequence and annotation of strain H04402 065, which was isolated from a botulism patient in the United Kingdom in 2004.


Clostridium botulinum/classification , Clostridium botulinum/genetics , Genome, Bacterial , Base Sequence , Botulism/epidemiology , Botulism/microbiology , Chromosomes, Bacterial , DNA, Bacterial/genetics , Humans , Molecular Sequence Data , Neurotoxins/genetics , Sequence Alignment , Sequence Analysis, DNA , United Kingdom/epidemiology
19.
PLoS One ; 6(12): e28879, 2011.
Article En | MEDLINE | ID: mdl-22216131

Here we describe a virus discovery protocol for a range of different virus genera, that can be applied to biopsy-sized tissue samples. Our viral enrichment procedure, validated using canine and human liver samples, significantly improves viral read copy number and increases the length of viral contigs that can be generated by de novo assembly. This in turn enables the Illumina next generation sequencing (NGS) platform to be used as an effective tool for viral discovery from tissue samples.


Biopsy , Viruses/isolation & purification , Animals , Dogs , Humans , Liver/virology , RNA, Viral/genetics , Viruses/genetics
20.
Genome Biol ; 11(9): R94, 2010.
Article En | MEDLINE | ID: mdl-20875114

BACKGROUND: The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will be used to accelerate both basic research on genome evolution and applied research across the cultivated Brassica species. RESULTS: We have determined and analyzed the sequence of B. rapa chromosome A3. We obtained 31.9 Mb of sequences, organized into nine contigs, which incorporated 348 overlapping BAC clones. Annotation revealed 7,058 protein-coding genes, with an average gene density of 4.6 kb per gene. Analysis of chromosome collinearity with the A. thaliana genome identified conserved synteny blocks encompassing the whole of the B. rapa chromosome A3 and sections of four A. thaliana chromosomes. The frequency of tandem duplication of genes differed between the conserved genome segments in B. rapa and A. thaliana, indicating differential rates of occurrence/retention of such duplicate copies of genes. Analysis of 'ancestral karyotype' genome building blocks enabled the development of a hypothetical model for the derivation of the B. rapa chromosome A3. CONCLUSIONS: We report the near-complete chromosome sequence from a dicotyledonous crop species. This provides an example of the complexity of genome evolution following polyploidy. The high degree of contiguity afforded by the clone-by-clone approach provides a benchmark for the performance of whole genome shotgun approaches presently being applied in B. rapa and other species with complex genomes.


Brassica rapa/genetics , Chromosomes, Plant , Conserved Sequence , Sequence Analysis, DNA , Synteny , Arabidopsis/genetics , Base Sequence , Chromosome Mapping , Chromosome Structures , Chromosomes, Artificial, Bacterial , Contig Mapping , DNA, Plant/genetics , Evolution, Molecular , Gene Duplication , Gene Rearrangement , Genome, Plant , Karyotyping , Molecular Sequence Annotation , Polyploidy
...