Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brain Behav Immun ; 118: 221-235, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458498

RESUMEN

The neuroinflammatory response to intracortical microelectrodes (IMEs) used with brain-machine interfacing (BMI) applications is regarded as the primary contributor to poor chronic performance. Recent developments in high-plex gene expression technologies have allowed for an evolution in the investigation of individual proteins or genes to be able to identify specific pathways of upregulated genes that may contribute to the neuroinflammatory response. Several key pathways that are upregulated following IME implantation are involved with the complement system. The complement system is part of the innate immune system involved in recognizing and eliminating pathogens - a significant contributor to the foreign body response against biomaterials. Specifically, we have identified Complement 3 (C3) as a gene of interest because it is the intersection of several key complement pathways. In this study, we investigated the role of C3 in the IME inflammatory response by comparing the neuroinflammatory gene expression at the microelectrode implant site between C3 knockout (C3-/-) and wild-type (WT) mice. We have found that, like in WT mice, implantation of intracortical microelectrodes in C3-/- mice yields a dramatic increase in the neuroinflammatory gene expression at all post-surgery time points investigated. However, compared to WT mice, C3 depletion showed reduced expression of many neuroinflammatory genes pre-surgery and 4 weeks post-surgery. Conversely, depletion of C3 increased the expression of many neuroinflammatory genes at 8 weeks and 16 weeks post-surgery, compared to WT mice. Our results suggest that C3 depletion may be a promising therapeutic target for acute, but not chronic, relief of the neuroinflammatory response to IME implantation. Additional compensatory targets may also be required for comprehensive long-term reduction of the neuroinflammatory response for improved intracortical microelectrode performance.


Asunto(s)
Complemento C3 , Inflamación , Animales , Ratones , Complemento C3/genética , Electrodos Implantados , Microelectrodos
2.
ACS Appl Bio Mater ; 7(2): 1052-1063, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38290529

RESUMEN

Intracortical microelectrode arrays (MEAs) are used for recording neural signals. However, indwelling devices result in chronic neuroinflammation, which leads to decreased recording performance through degradation of the device and surrounding tissue. Coating the MEAs with bioactive molecules is being explored to mitigate neuroinflammation. Such approaches often require an intermediate functionalization step such as (3-aminopropyl)triethoxysilane (APTES), which serves as a linker. However, the standalone effect of this intermediate step has not been previously characterized. Here, we investigated the effect of coating MEAs with APTES by comparing APTES-coated to uncoated controls in vivo and ex vivo. First, we measured water contact angles between silicon uncoated and APTES-coated substrates to verify the hydrophilic characteristics of the APTES coating. Next, we implanted MEAs in the motor cortex (M1) of Sprague-Dawley rats with uncoated or APTES-coated devices. We assessed changes in the electrochemical impedance and neural recording performance over a chronic implantation period of 16 weeks. Additionally, histology and bulk gene expression were analyzed to understand further the reactive tissue changes arising from the coating. Results showed that APTES increased the hydrophilicity of the devices and decreased electrochemical impedance at 1 kHz. APTES coatings proved detrimental to the recording performance, as shown by a constant decay up to 16 weeks postimplantation. Bulk gene analysis showed differential changes in gene expression between groups that were inconclusive with regard to the long-term effect on neuronal tissue. Together, these results suggest that APTES coatings are ultimately detrimental to chronic neural recordings. Furthermore, interpretations of studies using APTES as a functionalization step should consider the potential consequences if the final functionalization step is incomplete.


Asunto(s)
Aminas , Enfermedades Neuroinflamatorias , Ratas , Animales , Ratas Sprague-Dawley , Microelectrodos , Electrodos Implantados , Materiales Biocompatibles Revestidos/química
3.
Biomaterials ; 303: 122351, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37931456

RESUMEN

Intracortical microelectrode arrays (MEAs) are used to record neural activity. However, their implantation initiates a neuroinflammatory cascade, involving the accumulation of reactive oxygen species, leading to interface failure. Here, we coated commercially-available MEAs with Mn(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), to mitigate oxidative stress. First, we assessed the in vitro cytotoxicity of modified sample substrates. Then, we implanted 36 rats with uncoated, MnTBAP-coated ("Coated"), or (3-Aminopropyl)triethoxysilane (APTES)-coated devices - an intermediate step in the coating process. We assessed electrode performance during the acute (1-5 weeks), sub-chronic (6-11 weeks), and chronic (12-16 weeks) phases after implantation. Three subsets of animals were euthanized at different time points to assess the acute, sub-chronic and chronic immunohistological responses. Results showed that MnTBAP coatings were not cytotoxic in vitro, and their implantation in vivo improved the proportion of electrodes during the sub-chronic and chronic phases; APTES coatings resulted in failure of the neural interface during the chronic phase. In addition, MnTBAP coatings improved the quality of the signal throughout the study and reduced the neuroinflammatory response around the implant as early as two weeks, an effect that remained consistent for months post-implantation. Together, these results suggest that MnTBAP coatings are a potentially useful modification to improve MEA reliability.


Asunto(s)
Silicio , Ratas , Animales , Microelectrodos , Reproducibilidad de los Resultados , Electrodos Implantados
4.
Micromachines (Basel) ; 14(10)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37893339

RESUMEN

Intracortical microelectrode arrays (MEAs) can be used in a range of applications, from basic neuroscience research to providing an intimate interface with the brain as part of a brain-computer interface (BCI) system aimed at restoring function for people living with neurological disorders or injuries. Unfortunately, MEAs tend to fail prematurely, leading to a loss in functionality for many applications. An important contributing factor in MEA failure is oxidative stress resulting from chronically inflammatory-activated microglia and macrophages releasing reactive oxygen species (ROS) around the implant site. Antioxidants offer a means for mitigating oxidative stress and improving tissue health and MEA performance. Here, we investigate using the clinically available antioxidant dimethyl fumarate (DMF) to reduce the neuroinflammatory response and improve MEA performance in a rat MEA model. Daily treatment of DMF for 16 weeks resulted in a significant improvement in the recording capabilities of MEA devices during the sub-chronic (Weeks 5-11) phase (42% active electrode yield vs. 35% for control). However, these sub-chronic improvements were lost in the chronic implantation phase, as a more exacerbated neuroinflammatory response occurs in DMF-treated animals by 16 weeks post-implantation. Yet, neuroinflammation was indiscriminate between treatment and control groups during the sub-chronic phase. Although worse for chronic use, a temporary improvement (<12 weeks) in MEA performance is meaningful. Providing short-term improvement to MEA devices using DMF can allow for improved use for limited-duration studies. Further efforts should be taken to explore the mechanism behind a worsened neuroinflammatory response at the 16-week time point for DMF-treated animals and assess its usefulness for specific applications.

5.
Acta Biomater ; 169: 348-362, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37507031

RESUMEN

Brain-Machine Interface systems (BMIs) are clinically valuable devices that can provide functional restoration for patients with spinal cord injury or improved integration for patients requiring prostheses. Intracortical microelectrodes can record neuronal action potentials at a resolution necessary for precisely controlling BMIs. However, intracortical microelectrodes have a demonstrated history of progressive decline in the recording performance with time, inhibiting their usefulness. One major contributor to decreased performance is the neuroinflammatory response to the implanted microelectrodes. The neuroinflammatory response can lead to neurodegeneration and the formation of a glial scar at the implant site. Historically, histological imaging of relatively few known cellular and protein markers has characterized the neuroinflammatory response to implanted microelectrode arrays. However, neuroinflammation requires many molecular players to coordinate the response - meaning traditional methods could result in an incomplete understanding. Taking advantage of recent advancements in tools to characterize the relative or absolute DNA/RNA expression levels, a few groups have begun to explore gene expression at the microelectrode-tissue interface. We have utilized a custom panel of ∼813 neuroinflammatory-specific genes developed with NanoString for bulk tissue analysis at the microelectrode-tissue interface. Our previous studies characterized the acute innate immune response to intracortical microelectrodes. Here we investigated the gene expression at the microelectrode-tissue interface in wild-type (WT) mice chronically implanted with nonfunctioning probes. We found 28 differentially expressed genes at chronic time points (4WK, 8WK, and 16WK), many in the complement and extracellular matrix system. Further, the expression levels were relatively stable over time. Genes identified here represent chronic molecular players at the microelectrode implant sites and potential therapeutic targets for the long-term integration of microelectrodes. STATEMENT OF SIGNIFICANCE: Intracortical microelectrodes can record neuronal action potentials at a resolution necessary for the precise control of Brain-Machine Interface systems (BMIs). However, intracortical microelectrodes have a demonstrated history of progressive declines in the recording performance with time, inhibiting their usefulness. One major contributor to the decline in these devices is the neuroinflammatory response against the implanted microelectrodes. Historically, neuroinflammation to implanted microelectrode arrays has been characterized by histological imaging of relatively few known cellular and protein markers. Few studies have begun to develop a more in-depth understanding of the molecular pathways facilitating device-mediated neuroinflammation. Here, we are among the first to identify genetic pathways that could represent targets to improve the host response to intracortical microelectrodes, and ultimately device performance.


Asunto(s)
Inflamación , Enfermedades Neuroinflamatorias , Ratones , Animales , Microelectrodos , Electrodos Implantados , Inflamación/genética , Inflamación/patología , Inmunidad Innata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...