Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955176

RESUMEN

Low-temperature KSCN molten salt is a promising technique to synthesize defect-rich MoS2catalysts for hydrogen evolution reaction (HER). However, owing to the fast ion diffusion rate for rapid crystal growth, the resultant catalysts show a morphology of microsphere, which aggregates from MoS2nanosheets, to suppress the catalytic performance. In this work, large-sized few-layer MoS2nanosheets are synthesized via a spatial confinement strategy by adding inert NaCl into the KSCN molten salt. With the NaCl spacer to physically block the long-distance ion diffusion and isolate the chemical reaction, the MoS2nucleation and subsequent crystal growth could be controlled, guiding the nanosheets to grow along the narrow gap between the NaCl crystals to avoid aggregation. As a result, ultrathin MoS2nanosheets with a large geometry size are constructed. Profiting from the architecture to expose active sites and boost charge transfer kinetics, the large-sized few-layer MoS2nanosheets exhibit an impressive HER performance, showing a smallη10of 160 mV and a low Tafel slope of 53 mV dec-1with excellent stability. This work provides not only an efficient HER catalyst but also a facile spatial confinement technique to design and synthesize a large spectrum of transition metal sulfides for broad uses.

2.
ChemSusChem ; : e202400705, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818626

RESUMEN

The vanadium redox flow battery (VRFB) holds promise for large-scale energy storage applications, despite its lower energy and power densities compared to advanced secondary batteries available today. Carbon materials are considered suitable catalyst electrodes for improving many aspects of the VRFB. However, pristine graphite structures in carbon materials are catalytically inert and require modification to activate their catalytic activity. Among the various strategies developed so far, O-functionalization and chemical doping of carbon materials are considered some of the most promising pathways to regulate their electronic structures. Building on the catalytic mechanisms involved in the VRFB, this concise review discusses recent advancements in the O-functionalization and chemical doping of carbon materials. Furthermore, it explores how these materials can be tailored and highlights future directions for developing more promising VRFBs to guide future research.

3.
PLoS One ; 19(5): e0302810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38713685

RESUMEN

OBJECTIVE: The two commonly used diagnostic methods for taurodontism are susceptible to aging changes, mastication wear and other factors. Therefore, this study proposed an improved diagnostic method for taurodontism, and compared it with the previous two methods as a supplement for taurodontism diagnosis. METHODS: The included patients were aged 10-89 years and admitted to the Department of Stomatology of Hebei Eye Hospital from June 1, 2022 to May 31, 2023. Eighty cone-beam computed tomography images were divided equally into 4 groups: 10-29, 30-49, 50-69, and 70-89 years old. The right mandibular first molars were selected as measurement objects. Firstly, |BD| and taurodontism index (TI)-related parameters were measured using Shifman and Chanannel's method and crown-body(CB) and root (R) lengths was measured by Seow and Lai's method. The improved method used the length from the cementoenamel junction(CEJ) to the root bifurcation point(body, B)and the root length(root, R)as the measurement objects. Finally, TI, CB/R ratios, and B/R ratios were calculated according to the formulas given below. One-way ANOVA analysis was mainly used to compare the differences in the values, indices and ratios of taurodontism among different age groups (p<0.05). RESULTS: With the increase of age, |BD| and TI values decreased significantly (p<0.01). The CB/R ratios of 70-89 years group were significantly lower than those of the other three groups (p<0.01). Ratios derived from the improved method were significantly lower in the 70-89 years than in 10-29 years group (p<0.05). CONCLUSIONS: The |BD| and TI parameters proposed by Shifman and channel are significantly influenced by age. The measurements of Seow and Lai (CB/R ratios) were less affected by age compared with those of the former. The improved method(B/R ratios) was least affected by age, which would reduce error and bias in the measurement of taurodontism and obtain more objective results in older patients.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Cavidad Pulpar/anomalías , Humanos , Anciano , Persona de Mediana Edad , Adolescente , Adulto , Anciano de 80 o más Años , Niño , Femenino , Masculino , Adulto Joven , Tomografía Computarizada de Haz Cónico/métodos , Diente Molar/diagnóstico por imagen , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico
4.
Chem Commun (Camb) ; 60(19): 2649-2652, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38348769

RESUMEN

LiNO3 is recognized as an effective additive, forming a dense, nitrogen-rich solid electrolyte interphase (SEI) on lithium's surface, which safeguards it from parasitic reactions. However, its use is limited due to the poor solubility in carbonate electrolytes. Herein, we introduce a bilayer separator designed to release LiNO3 sustainably. This continual release not only alters the chemistry of the SEI but also replenishes the additives that are depleted during battery cycling, thereby enhancing the durability of the modified interphase. This strategy effectively curtails Li dendrite formation, significantly enhancing the longevity of Li|LiFePO4 batteries, evidenced by an impressive 85% capacity retention after 800 cycles. This research offers a compelling remedy to the longstanding challenge of incorporating LiNO3 in carbonate electrolytes.

5.
Small ; 20(24): e2309647, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38240559

RESUMEN

1T-MoSe2 is recognized as a promising anode material for sodium-ion batteries, thanks to its excellent electrical conductivity and large interlayer distance. However, its inherent thermodynamic instability often presents unparalleled challenges in phase control and stabilization. Here, a molecular intercalation strategy is developed to synthesize thermally stable 1T-rich MoSe2, covalently bonded to an intercalated carbon layer (1TR/2H-MoSe2@C). Density functional theory calculations uncover that the introduced ethylene glycol molecules not only serve as electron donors, inducing a reorganization of Mo 4d orbitals, but also as sacrificial guest materials that generate a conductive carbon layer. Furthermore, the C─Se/C─O─Mo bonds encourage strong interfacial electronic coupling, and the carbon layer prevents the restacking of MoSe2, regulating the maximum 1T phase to an impressive 80.3%. Consequently, the 1TR/2H-MoSe2@C exhibits an extraordinary rate capacity of 326 mAh g-1 at 5 A g-1 and maintains a long-term cycle stability up to 1500 cycles, with a capacity of 365 mAh g-1 at 2 A g-1. Additionally, the full cell delivers an appealing energy output of 194 Wh kg-1 at 208 W kg-1, with a capacity retention of 87.3% over 200 cycles. These findings contribute valuable insights toward the development of innovative transition metal dichalcogenides for next-generation energy storage technologies.

6.
Small ; 20(5): e2305964, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37759425

RESUMEN

Hosts hold great prospects for addressing the dendrite growth and volume expansion of the Li metal anode, but Li dendrites are still observable under the conditions of high deposition capacity and/or high current density. Herein, a nitrogen-doped graphene mesh (NGM) is developed, which possesses a conductive and lithiophilic scaffold for efficient Li deposition. The abundant nanopores in NGM can not only provide sufficient room for Li deposition, but also speed up Li ion transport to achieve a high-rate capability. Moreover, the evenly distributed N dopants on the NGM can guide the uniform nucleation of Li so that to inhibit dendrite growth. As a result, the composite NGM@Li anode shows satisfactory electrochemical performances for Li-S batteries, including a high capacity of 600 mAh g-1 after 300 cycles at 1 C and a rate capacity of 438 mAh g-1 at 3 C. This work provides a new avenue for the fabrication of graphene-based hosts with large areal capacity and high-rate capability for Li metal batteries.

7.
Adv Mater ; 35(48): e2307017, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37821238

RESUMEN

Nanoarray electrocatalysts with unique advantage of facilitating gas bubble detachment have garnered significant interest in gas evolution reactions (GERs). Existing research is largely based on a static hypothesis, assuming that buoyancy is the only driving force for the release of bubbles during GERs. However, this hypothesis overlooks the effect of the self-dynamic electrolyte flow, which is induced by the release of mature bubbles and helps destabilize and release the smaller, immature bubbles nearby. Herein, the enhancing effect of self-dynamic electrolyte flow on nanoarray structures is examined. Phase-field simulations demonstrate that the flow field of electrode with arrayed surface focuses shear force directly onto the gas bubble for efficient detachment, due to the flow could pass through voids and channels to bypass the shielding effect. The flow field therefore has a more substantial impact on the arrayed surface than the nanoscale smooth surface in terms of reducing the critical bubble size. To validate this, superaerophobic ferrous-nickel sulfide nanoarrays are fabricated and employed for water splitting, which display improved efficiency for GERs. This study contributes to understanding the influence of self-dynamic electrolyte on GERs and emphasizes that it should be considered when designing and evaluating nanoarray electrocatalysts.

8.
Chem Commun (Camb) ; 59(81): 12140-12143, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37740333

RESUMEN

Placing blocking layers between electrodes has shown paramount prospects in suppressing the shuttle effect of Li-S batteries, but the associated ionic transport would be a concurrent obstacle. Herein, we present a Li-based crystal composited with carbon (LiPN2@C) by a one-step annealing of Li+ absorbed melamine polyphosphate, which simultaneously achieves alleviated polysulfide-shuttling and facilitated Li+ transport. As a homologous crystal, LiPN2 with abundant lithiophilic sites makes Li+ transport more efficient and sustainable. With a LiPN2@C-modified separator, the Li2S cathode exhibits a much-lower activation potential of 2.4 V and a high-rate capacity of 519 mA h g-1 at 2C. Impressively, the battery delivers a capacity of 726 mA h g-1 at 0.5C with a low decay rate of 0.25% per cycle during 100 continuous cycles.

9.
Research (Wash D C) ; 6: 0209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593340

RESUMEN

Soft carbons have attracted extensive interests as competitive anodes for fast-charging sodium-ion batteries (SIBs); however, the high-rate performance is still restricted by their large ion migration barriers and sluggish reaction kinetics. Herein, we show a molecular design approach toward the fabrication of nitrogen and phosphorus codoped mesoporous soft carbon (NPSC). The key to this strategy lies in the chemical cross-linking reaction between polyphosphoric acid and p-phenylenediamine, associated with pyrolysis induced in-situ self-activation that creates mesoporous structures and rich heteroatoms within the carbon matrix. Thanks to the enlarged interlayer spacing, reduced ion diffusion length, and plentiful active sites, the obtained NPSC delivers a superb rate capacity of 215 mAh g-1 at 10 A g-1 and an ultralong cycle life of 4,700 cycles at 5 A g-1. Remarkably, the full cell shows 99% capacity retention during 100 continuous cycles, and maximum energy and power densities of 191 Wh kg-1 and 9.2 kW kg-1, respectively. We believe that such a synthetic protocol could pave a novel venue to develop soft carbons with unique properties for advanced SIBs.

10.
Adv Sci (Weinh) ; 10(23): e2301288, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37311206

RESUMEN

3D Cu current collectors have been demonstrated to improve the cycling stability of Li metal anodes, however, the role of their interfacial structure for Li deposition pattern has not been investigated thoroughly. Herein, a series of 3D integrated gradient Cu-based current collectors are fabricated by the electrochemical growth of CuO nanowire arrays on Cu foil (CuO@Cu), where their interfacial structures can be readily controlled by modulating the dispersities of the nanowire arrays. It is found that the interfacial structures constructed by sparse and dense dispersion of CuO nanowire arrays are both disadvantageous for the nucleation and deposition of Li metal, consequently fast dendrite growth. In contrast, a uniform and appropriate dispersity of CuO nanowire arrays enables stable bottom Li nucleation associated with smooth lateral deposition, affording the ideal bottom-up Li growth pattern. The optimized CuO@Cu-Li electrodes exhibit a highly reversible Li cycling including a coulombic efficiency of up to ≈99% after 150 cycles and a long-term lifespan of over 1200 h. When coupling with LiFePO4 cathode, the coin and pouch full-cells deliver outstanding cycling stability and rate capability. This work provides a new insight to design the gradient Cu current collectors toward high-performance Li metal anodes.

11.
Adv Mater ; 35(29): e2211168, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36756778

RESUMEN

Lithium-sulfur batteries (LSBs) with superior energy density are among the most promising candidates of next-generation energy storage techniques. As the key step contributing to 75% of the overall capacity, Li2 S deposition remains a formidable challenge for LSBs applications because of its sluggish kinetics. The severe kinetic issue originates from the huge interfacial impedances, indicative of the interface-dominated nature of Li2 S deposition. Accordingly, increasing efforts have been devoted to interface engineering for efficient Li2 S deposition, which has attained inspiring success to date. However, a systematic overview and in-depth understanding of this critical field are still absent. In this review, the principles of interface-controlled Li2 S precipitation are presented, clarifying the pivotal roles of electrolyte-substrate and electrolyte-Li2 S interfaces in regulating Li2 S depositing behavior. For the optimization of the electrolyte-substrate interface, efforts on the design of substrates including metal compounds, functionalized carbons, and organic compounds are systematically summarized. Regarding the regulation of electrolyte-Li2 S interface, the progress of applying polysulfides catholytes, redox mediators, and high-donicity/polarity electrolytes is overviewed in detail. Finally, the challenges and possible solutions aiming at optimizing Li2 S deposition are given for further development of practical LSBs. This review would inspire more insightful works and, more importantly, may enlighten other electrochemical areas concerning heterogeneous deposition processes.

12.
Adv Mater ; 35(16): e2210734, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36623267

RESUMEN

Graphene has long been recognized as a potential anode for next-generation lithium-ion batteries (LIBs). The past decade has witnessed the rapid advancement of graphene anodes, and considerable breakthroughs are achieved so far. In this review, the aim is to provide a research roadmap of graphene anodes toward practical LIBs. The Li storage mechanism of graphene is started with and then the approaches to improve its electrochemical performance are comprehensively summarized. First, morphologically engineered graphene anodes with porous, spheric, ribboned, defective and holey structures display improved capacity and rate performance owing to their highly accessible surface area, interconnected diffusion channels, and sufficient active sites. Surface-modified graphene anodes with less aggregation, fast electrons/ions transportation, and optimal solid electrolyte interphase are discussed, demonstrating the close connection between the surface structure and electrochemical activity of graphene. Second, graphene derivatives anodes prepared by heteroatom doping and covalent functionalization are outlined, which show great advantages in boosting the Li storage performances because of the additionally introduced defect/active sites for further Li accommodation. Furthermore, binder-free and free-standing graphene electrodes are presented, exhibiting great prospects for high-energy-density and flexible LIBs. Finally, the remaining challenges and future opportunities of practically available graphene anodes for advanced LIBs are highlighted.

13.
ACS Appl Mater Interfaces ; 15(4): 5172-5179, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36650087

RESUMEN

CuO has been regarded as a promising catalyst for the electrochemical reduction of nitrate (NO3-RR) to ammonium (NH3); however, the intrinsic activity is greatly restricted by its poor electrical property. In this work, self-supported Zn-doped CuO nanosheet arrays (Zn-CuO NAs) are synthesized for NO3-RR, where the Zn dopant regulates the electronic structure of CuO to significantly accelerate the interfacial charge transfer and inner electron transport kinetics. The Zn-CuO NAs are constructed by a one-step etching of commercial brass (Cu64Zn36 alloy) in 0.1 M NaOH solution, which experiences a corrosion-oxidation-reconstruction process. Initially, the brass undergoes a dealloying procedure to produce nanosized Cu, which is immediately oxidized to the Cu2O unit with a low valence state. Subsequently, Cu2O is further oxidized to the CuO unit and reconstructed into nanosheets with the coprecipitation of Zn2+. For NO3-RR, Zn-CuO NAs show a high NH3 production rate of 945.1 µg h-1 cm-2 and a Faradaic efficiency of up to 95.6% at -0.7 V in 0.1 M Na2SO4 electrolyte with 0.01 M NaNO3, which outperforms the majority of the state-of-the-art catalysts. The present work offers a facile yet very efficient strategy for the scale-up synthesis of Zn-CuO NAs for high-performance NH3 production from NO3-RR.

14.
Adv Mater ; 34(37): e2204624, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35866182

RESUMEN

Developing high-efficiency electrocatalysts for the hydrogen evolution and oxidation reactions (HER/HOR) in alkaline electrolytes is of critical importance for realizing renewable hydrogen technologies. Ruthenium phosphides (RuPx ) are promising candidates to substitute Pt-based electrodes; however, great challenges still remain in their electronic structure regulation for optimizing intermediate adsorption. Herein, it is reported that a homologous RuP@RuP2 core-shell architecture constructed by a phosphatization-controlled phase-transformation strategy enables strong electron coupling for optimal intermediate adsorption by virtue of the emergent interfacial functionality. Density functional theory calculations show that the RuP core and RuP2 shell present efficient electron transfer, leading to a close to thermoneutral hydrogen adsorption Gibbs free energy of 0.04 eV. Impressively, the resulting material exhibits superior HER/HOR activities in alkaline media, which outperform the benchmark Pt/C and are among the best reported bifunctional hydrogen electrocatalysts. The present work not only provides an efficient and cost-effective bifunctional hydrogen electrocatalyst, but also offers a new synthetic protocol to rationally synthesize homologous core-shell nanostructures for widespread applications.

15.
Nano Lett ; 22(9): 3728-3736, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35482551

RESUMEN

Electrocatalysts are considered the most promising candidates in ameliorating the slow kinetics of Li-S batteries (LSBs), however, the issue of insufficient catalytic capability remains to be addressed. Herein, we report an integrated catalytic network comprising graphitic carbon-encapsulated/bridged ultrafine NiCoP embedded in N, P-codoped carbon (GC-uNiCoP@NPC) as a highly competent catalyst for sulfur-based species conversions. By profiling the evolution map of Li-S chemistry via operando kinetic analyses, GC-uNiCoP@NPC is demonstrated to possess versatile yet efficient catalytic activity for sulfur reduction/evolution reactions, especially the rate-determining heterogeneous phase transitions. As a result, GC-uNiCoP@NPC enables high capacity and stable cycling of sulfur cathode under high areal loading and lean electrolyte. Moreover, pouch cells assembled under practical conditions present promising performance with a specific energy of 302 Wh kg-1. This work not only conceptually expands the catalyst design for LSBs but also provides a comprehensive insight into the catalyst performance for Li-S chemistry.

16.
Chem Commun (Camb) ; 57(32): 3885-3888, 2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33871503

RESUMEN

Potassium-ion batteries (PIBs) are attracting increasing attention due to the abundance of K resources, but the sluggish kinetics and inferior cycling stability of anodes still hinder their application. Herein, we present a hybrid 1T/2H phase MoSe2 anode, which shows noticeable pseudocapacitive response and fast kinetics for K storage. Correspondingly, superior electrochemical performances including a high reversible capacity of 440 mA h g-1 after 100 cycles at 0.1 A g-1 and superb rate capacity of 211 mA h g-1 at 20.0 A g-1 are achieved. We believe this work may shed light on the phase engineering of transition metal compounds for rapid charging PIBs.

17.
Adv Mater ; 33(11): e2005587, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33569838

RESUMEN

Layered γ-type iron oxyhydroxide (γ-FeOOH) is a promising material for various applications; however, its sheet-shaped structure often suffers from instability that results in aggregation and leads to inferior performance. Herein, a kinetically controlled hydrolysis strategy is proposed for the scalable synthesis of γ-FeOOH nanosheets arrays (NAs) with enhanced structural stability on diverse substrates at ambient conditions. The underlying mechanisms for the growth of γ-FeOOH NAs associated with their structural evolution are systematically elucidated by alkalinity-controlled synthesis and time-dependent experiments. As a proof-of-concept application, γ-FeOOH NAs are developed as electrocatalysts for the oxygen evolution reaction (OER), where the sample grown on nickel foam (NF) exhibits superior performance of high catalytic current density, small Tafel slope, and exceptional durability, which is among the top level of FeOOH-based electrocatalysts. Density functional theory calculations suggest that γ-NiOOH in situ generated from the electrooxidation of NF would induce charge accumulation on the Fe sites of γ-FeOOH NAs, leading to enhanced OER intermediates adsorption for water splitting. This work affords a new technique to rationally design and synthesize γ-FeOOH NAs for various applications.

18.
Adv Mater ; 33(10): e2003845, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33491836

RESUMEN

Li-chalcogen batteries, especially the Li-S batteries (LSBs), have received paramount interests as next generation energy storage techniques because of their high theoretical energy densities. However, the associated challenges need to be overcome prior to their commercialization. Elemental selenium, another chalcogen member, would be an attractive alternative to sulfur owing to its higher electronic conductivity, comparable capacity density, and moreover, excellent compatibility with carbonate electrolytes. Unlike LSBs, the research and development of Li-Se batteries (LSeBs) have garnered burgeoning attention but are still in their infant stage, where a comprehensive yet in-depth overview is highly imperative to guide future research. Herein, a critical review of LSeBs, in terms of the underlying mechanisms, cathode design, blocking layer engineering, and emerging solid-state electrolytes is provided. First, the electrolyte-dependent electrochemistry of LSeBs is discussed. Second, the advances in Se-based cathodes are comprehensively summarized, especially highlighting the state-of-the-art Sex Sy cathodes, and mainly focusing on their structures, compositions, and synthetic strategies. Third, the versatile separators/interlayers optimization and interface regulation are outlined, with a particular focus on the emerging solid-state electrolytes for advanced LSeBs. Last, the remaining challenges and research orientations in this booming field are proposed, which are expected to motivate more insightful works.

19.
ACS Appl Mater Interfaces ; 12(43): 48357-48362, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33052659

RESUMEN

Since H5N1 virus is a highly infectious pathogen that causes outbreaks of avian influenza, developing a sensitive and rapid diagnostic platform to sense it becomes significant. Here, a novel label-free fluorescence sensing platform based on DNA-templated silver nanoclusters (DNA-Ag NCs) is developed to detect the H5N1 gene sequence representing H5N1 virus. The three-segment-branched DNA structure with closed cytosine-rich loop is designed as an effective template to produce fluorescent Ag NCs, which is different with the previous design of cytosine-rich loop formed by hairpin-like single-stranded DNA or double-stranded DNA. The proposed fluorescence detection approach gives a wide linear range (500 pM-2 µM) and a low detection limit (500 pM) to sense H5N1 gene sequence. Furthermore, selective analysis of target DNA shows that our constructed analytical strategy has a high selectivity to H5N1 gene sequence. It is regarded as a promising method for highly sensitive and selective sensing of H5N1 virus.


Asunto(s)
Técnicas Biosensibles , ADN/química , Fluorescencia , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Nanopartículas del Metal/química , Plata/química , Animales , Bovinos , Tamaño de la Partícula , Albúmina Sérica Bovina/química , Propiedades de Superficie
20.
Chem Commun (Camb) ; 56(77): 11422-11425, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32840520

RESUMEN

A low-temperature doping approach has been developed for fabricating nitrogen and sulfur co-doped few-layer graphene (NS-FLG) by annealing graphene oxide in KSCN molten salt at 175 °C. The as-prepared NS-FLG with a high doping level and unique few-layer structure delivers remarkable performance for sodium-ion batteries (SIBs) in terms of a high reversible capacity of 325.4 mA h g-1 at 0.5 A g-1, a superb rate capacity of 203.6 mA h g-1 at 10 A g-1, and ultra-long cyclability over 5100 cycles. This work provides a new avenue for exploring advanced graphene-based materials towards SIBs and even other electrochemical fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA