Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 2): 132901, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848854

RESUMEN

H5-subtype avian influenza virus (AIV) is globally prevalent and undergoes frequent antigenic drift, necessitating regular updates to vaccines. One of the many influencing elements that cause incompatibility between vaccinations and epidemic strains is the dynamic alteration of glycosylation sites. However, the biological significance of N-glycosylation in the viral evolution and antigenic changes is unclear. Here, we performed a systematic analysis of glycosylation sites on the HA1 subunit of H5N1, providing insights into the changes of primary glycosylation sites, including 140 N, 156 N, and 170 N within the antigenic epitopes of HA1 protein. Multiple recombinant viruses were then generated based on HA genes of historical vaccine strains and deactivated for immunizing SPF chickens. Inactivated recombinant strains showed relatively closer antigenicity compared to which has identical N-glycosylation patterns. The N-glycosylation modification discrepancy highlights the inter-branch antigenic diversity of H5-subtype viruses in avian influenza and serves as a vital foundation for improving vaccination tactics.


Asunto(s)
Variación Antigénica , Pollos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Glicosilación , Animales , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Pollos/virología , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Aviar/prevención & control , Subtipo H5N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Epítopos/inmunología , Epítopos/química , Antígenos Virales/inmunología , Antígenos Virales/genética
2.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612921

RESUMEN

Nipah virus (NiV) is a highly lethal zoonotic virus with a potential large-scale outbreak, which poses a great threat to world health and security. In order to explore more potential factors associated with NiV, a proximity labeling method was applied to investigate the F, G, and host protein interactions systematically. We screened 1996 and 1524 high-confidence host proteins that interacted with the NiV fusion (F) glycoprotein and attachment (G) glycoprotein in HEK293T cells by proximity labeling technology, and 863 of them interacted with both F and G. The results of GO and KEGG enrichment analysis showed that most of these host proteins were involved in cellular processes, molecular binding, endocytosis, tight junction, and other functions. Cytoscape software (v3.9.1) was used for visual analysis, and the results showed that Cortactin (CTTN), Serpine mRNA binding protein 1 (SERBP1), and stathmin 1 (STMN1) were the top 20 proteins and interacted with F and G, and were selected for further validation. We observed colocalization of F-CTTN, F-SERBP1, F-STMN1, G-CTTN, G-SERBP1, and G-STMN1 using confocal fluorescence microscopy, and the results showed that CTTN, SERBP1, and STMN1 overlapped with NiV F and NiV G in HEK293T cells. Further studies found that CTTN can significantly inhibit the infection of the Nipah pseudovirus (NiVpv) into host cells, while SERBP1 and STMN1 had no significant effect on pseudovirus infection. In addition, CTTN can also inhibit the infection of the Hendra pseudovirus (HeVpv) in 293T cells. In summary, this study revealed that the potential host proteins interacted with NiV F and G and demonstrated that CTTN could inhibit NiVpv and HeVpv infection, providing new evidence and targets for the study of drugs against these diseases.


Asunto(s)
Virus Nipah , Humanos , Cortactina , Células HEK293 , Endocitosis , Glicoproteínas
3.
J Med Virol ; 96(3): e29491, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38402626

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne hemorrhagic fever disease with high fatality rate of 10%-20%. Vaccines or specific therapeutic measures remain lacking. Human interferon inducible transmembrane protein 3 (hIFITM3) is a broad-spectrum antiviral factor targeting viral entry. However, the antiviral activity of hIFITM3 against SFTS virus (SFTSV) and the functional mechanism of IFITM3 remains unclear. Here we demonstrate that endogenous IFITM3 provides protection against SFTSV infection and participates in the anti-SFTSV effect of type Ⅰ and Ⅲ interferons (IFNs). IFITM3 overexpression exhibits anti-SFTSV function by blocking Gn/Gc-mediated viral entry and fusion. Further studies showed that IFITM3 binds SFTSV Gc directly and its intramembrane domain (IMD) is responsible for this interaction and restriction of SFTSV entry. Mutation of two neighboring cysteines on IMD weakens IFITM3-Gc interaction and attenuates the antiviral activity of IFITM3, suggesting that IFITM3-Gc interaction may partly mediate the inhibition of SFTSV entry. Overall, our data demonstrate for the first time that hIFITM3 plays a critical role in the IFNs-mediated anti-SFTSV response, and uncover a novel mechanism of IFITM3 restriction of SFTSV infection, highlighting the potential of clinical intervention on SFTS disease.


Asunto(s)
Factores de Restricción Antivirales , Infecciones por Bunyaviridae , Síndrome de Trombocitopenia Febril Grave , Humanos , Infecciones por Bunyaviridae/inmunología , Proteínas de la Membrana/inmunología , Phlebovirus , Proteínas de Unión al ARN/inmunología , Síndrome de Trombocitopenia Febril Grave/inmunología , Proteínas Virales/metabolismo , Internalización del Virus , Factores de Restricción Antivirales/inmunología
4.
J Virol ; 97(12): e0137623, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37991368

RESUMEN

IMPORTANCE: Rotavirus (RV) is an important zoonosis virus, which can cause severe diarrhea and extra-intestinal infection. To date, some proteins or carbohydrates have been shown to participate in the attachment or internalization of RV, including HGBAs, Hsc70, and integrins. This study attempted to indicate whether there were other proteins that would participate in the entry of RV; thus, the RV VP4-interacting proteins were identified by proximity labeling. After analysis and verification, it was found that VIM and ACTR2 could significantly promote the proliferation of RV in intestinal cells. Through further viral binding assays after knockdown, antibody blocking, and recombinant protein overexpression, it was revealed that both VIM and ACTR2 could promote RV replication.


Asunto(s)
Proteína 2 Relacionada con la Actina , Proteínas de la Cápside , Mapas de Interacción de Proteínas , Rotavirus , Vimentina , Animales , Humanos , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteínas de la Cápside/metabolismo , Intestinos/citología , Rotavirus/química , Rotavirus/metabolismo , Vimentina/genética , Vimentina/metabolismo , Internalización del Virus , Replicación Viral , Unión Proteica
5.
J Med Virol ; 95(10): e29140, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37800627

RESUMEN

The epidemic of Mpox virus (MPXV) from May 2022 was once declared as a Public Health Emergency of International Concern by the World Health Organization. Vaccines play an important role in prevention of infectious diseases, and mRNA vaccine technology was proved to be a safe and effective platform with successful application in defense of coronavirus disease 2019. In this study, based on A29L, M1R, A35R, and B6R of MPXV, we developed two MPXV mRNA vaccine candidates, designated as MPXfus and MPXmix. The MPXfus was one-component, in which these four antigen proteins were linked in tandem by flexible linker and encoded by an individual mRNA as a fusion protein. The MPXmix was multicomponent containing four mRNA, and each mRNA encoded one antigen protein respectively. Mice were immunized with equal quality of MPXfus or MPXmix, delivered by lipid nanoparticles for evaluation and comparison of the immune responses induced by these two MPXV vaccine candidates. Results of immune response analyses indicated that both MPXfus and MPXmix could elicit high-level of antigen-specific antibodies and robust cellular immune response in mice. Moreover, results of virus neutralization assays suggested that sera from MPXfus- or MPXmix-immunized mice possessed high neutralizing activities against vaccinia virus. In addition, titers of antigen-specific antibody, levels of cellular immune response, and activities of neutralizing antibody against vaccinia virus induced by MPXfus and MPXmix presented no significant difference. In summary, this study provides valuable insights for further clinical development of one-component and multicomponent mRNA vaccine candidates for the prevention of MPXV and other orthomyxoviruses.


Asunto(s)
Mpox , Animales , Ratones , Anticuerpos Neutralizantes , Virus Vaccinia/genética , Inmunidad Celular , ARN Mensajero/genética , Anticuerpos Antivirales
6.
Nat Commun ; 14(1): 6333, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816705

RESUMEN

The severe fever with thrombocytopenia syndrome virus (SFTSV) is a tick-borne human-infecting bunyavirus, which utilizes two envelope glycoproteins, Gn and Gc, to enter host cells. However, the structure and organization of these glycoproteins on virion surface are not yet known. Here we describe the structure of SFTSV determined by single particle reconstruction, which allows mechanistic insights into bunyavirus assembly at near-atomic resolution. The SFTSV Gn and Gc proteins exist as heterodimers and further assemble into pentameric and hexameric peplomers, shielding the Gc fusion loops by both intra- and inter-heterodimer interactions. Individual peplomers are associated mainly through the ectodomains, in which the highly conserved glycans on N914 of Gc play a crucial role. This elaborate assembly stabilizes Gc in the metastable prefusion conformation and creates some cryptic epitopes that are only accessible in the intermediate states during virus entry. These findings provide an important basis for developing vaccines and therapeutic drugs.


Asunto(s)
Orthobunyavirus , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Humanos , Proteínas del Envoltorio Viral/metabolismo , Microscopía por Crioelectrón , Glicoproteínas/metabolismo
7.
Vaccines (Basel) ; 11(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37766097

RESUMEN

With no specific antiviral drugs and preventive vaccines against Mpox virus (MPXV), the epidemic has led to the declaration of a Public Health Emergency of International Concern. As a developmental direction for new vaccines, studies of subunit vaccines based upon MPXV antigen proteins are lacking. In this study, A29L, M1R, A35R, and B6R of MPXV were expressed and purified from a prokaryotic system. The four MPXV antigen proteins in combination were mixed with aluminum hydroxide or CpG7909 as adjuvant, and subsequently used to inoculate mice. The results of enzyme-linked immunosorbent assay (ELISA), flow cytometry analyses, and enzyme-linked immunospot (ELISPOT) assays indicated that A29L, M1R, A35R, and B6R elicited high-level antigen-specific antibodies and CD4+ T cells-based cellular immune response in mice. Moreover, the results of virus neutralization assays suggested that sera from the mice immunized with four proteins elicited high neutralizing activities against the vaccinia virus. Notably, the results of ELISA, ELISPOT, and virus neutralization assays also showed that the CpG7909 adjuvant was more effective in inducing an immune response compared with the aluminum adjuvant. In summary, this study offers valuable insights for further studies of subunit vaccine candidates for the prevention of MPXV and other orthomyxoviruses.

8.
Virus Res ; 336: 199218, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37678517

RESUMEN

Avipoxvirus 282E4 strain was extensively applied into recombinant vaccine vector to prevent other infectious diseases. However, little information on the genomic background, functional and genetic evolutionary of the isolate 282E4 strain was clarified. The results showed that the linear genome of avipoxvirus 282E4 was 308,826 bp, containing 313 open reading frames (ORFs) and 12 new predicted ORFs. The 282E4 strain appears to encode two novel thymidine kinase proteins and two TGF-beta-like proteins that may be associated with the suppression of the host's antiviral response. Avipoxvirus 282E4 also encodes 57 ankyrin repeat proteins and 5 variola B22R-like proteins, which composed 7% of the avipoxvirus 282E4 genome. GO and KEGG analysis further revealed that 12 ORFs participate in viral transcription process, 7 ORFs may function during DNA repair, replication and biological synthesis, and ORF 208 is involved in the process of virus life cycle. Interestingly, phylogenetic analysis based on concatenated sequences p4b and DNA polymerase of avipoxviruses gene demonstrates that avipoxvirus 282E4 strain is divergent from known FWPV isolates and is similar to shearwater poxvirus (SWPV-1) that belongs to the CNPV-like virus. Sequencing avipoxvirus 282E4 is a significant step to judge the genetic position of avipoxviruses within the larger Poxviridae phylogenetic tree and provide a new insight into the genetic background of avipoxvirus 282E4 and interspecies transmission of poxviruses, meanwhile, explanation of gene function provides theoretical foundation for vaccine design with 282E4 strain as skeleton.

9.
Vet Microbiol ; 284: 109823, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37392666

RESUMEN

Rabies, which caused by rabies virus (RABV), is a zoonotic and life-threatening disease with 100% mortality, and there is no effective treatment thus far due to the unclear pathogenesis and less of treatment targets. Interferon-induced transmembrane protein 3 (IFITM3) has recently been identified as an important anti-viral host effector induced by type I interferon. However, the role of IFITM3 in RABV infection has not been elucidated. In this study, we demonstrated that IFITM3 is a crucial restriction factor for RABV, the viral-induced IFITM3 significantly inhibited RABV replication, while knockdown of IFITM3 had the opposite effect. We then identified that IFNß induces the upregulation of IFITM3 in the absence or presence of RABV infection, meanwhile, IFITM3 positively regulates RABV-triggered production of IFNß in a feedback manner. In-depth research we found that IFITM3 not only inhibits the virus absorb and entry, but also inhibits viral replication through mTORC1-dependent autophagy. All these findings broaden our understanding of IFITM3 function and uncover a novel mechanism against RABV infection.


Asunto(s)
Interferón Tipo I , Virus de la Rabia , Rabia , Animales , Rabia/veterinaria , Internalización del Virus , Replicación Viral , Interferón Tipo I/metabolismo , Autofagia
10.
J Virol ; 97(3): e0174322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36877044

RESUMEN

Type III interferons (IFNLs) have critical roles in the host's innate immune system, also serving as the first line against pathogenic infections of mucosal surfaces. In mammals, several IFNLs have been reported; however, only limited data on the repertoire of IFNLs in avian species is available. Previous studies showed only one member in chicken (chIFNL3). Herein, we identified a novel chicken IFNL for the first time, termed chIFNL3a, which contains 354 bp, and encodes 118 amino acids. The predicted protein is 57.1% amino acid identity with chIFNL. Genetic, evolutionary, and sequence analyses indicated that the new open reading frame (ORF) groups with type III chicken IFNs represent a novel splice variant. Compared to IFNs from different species, the new ORF is clustered within the type III IFNs group. Further study showed that chIFNL3a could activate a panel of IFN-regulated genes and function mediated by the IFNL receptor, and chIFNL3a markedly inhibited the replication of Newcastle disease virus (NDV) and influenza virus in vitro. These data collectively shed light on the repertoire of IFNs in avian species and provide useful information that further elucidate the interaction of the chIFNLs and viral infection of poultry. IMPORTANCE Interferons (IFNs) are critical soluble factors in the immune system, and are composed of 3 types (I, II, and III) that utilize different receptor complexes (IFN-αR1/IFN-αR2, IFN-γR1/IFN-γR2, and IFN-λR1/IL-10R2, respectively). Herein, we identified IFNL from the genomic sequences of chicken and termed it chIFNL3a, located on chromosome 7 of chicken. Phylogenetically clustered with all known types of chicken IFNs, the finding of this IFN is considered a type III IFN. To further evaluate the biological properties of chIFNL3a, the target protein was prepared by the baculovirus expression system (BES), which could markedly inhibit the replication of NDV and influenza viruses. In this study, we uncovered a new interferon lambda splice variant of chicken, termed chIFNL3a, which could inhibit viral replication in cells. Importantly, these novel findings may extend to other viruses, offering a new direction for therapeutic interventions.


Asunto(s)
Pollos , Orthomyxoviridae , Animales , Interferón lambda , Antivirales/farmacología , Interferones/metabolismo , Orthomyxoviridae/metabolismo , Virus de la Enfermedad de Newcastle/metabolismo , Mamíferos
11.
Int J Biochem Cell Biol ; 153: 106325, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36330888

RESUMEN

IFITM proteins are a host restriction factor with broad-spectrum antiviral activity, but the role in the paramyxovirus entry remains unclear. Nipah virus (NiV) is a zoonotic virus of the paramyxoviridae with extremely high lethality. Here, we assessed the role of IFITM3 on NiV G and F glycoprotein-mediated virus entry. Using NiV pseudovirus bearing NiV G and F proteins to infect IFITM3-induced MDCK cells, we found that overexpression of IFITM3 promotes NiV G and F proteins-mediated virus entry. Mechanistically, the subcellular distribution showed that F protein completely co-localized with IFITM3, but G protein does not. Immunoprecipitation further indicated that IFITM3 strongly captures F protein rather than G protein. F protein truncation found that the F1 subunit completely co-localized and captures with IFITM3, but not the F2 subunit. Furthermore, IFITM3 strongly binds to F1 truncations containing fusion peptide (FP), and F1 strongly captures IFITM3 truncation with the intramembrane domain (IMD). Together, the results suggest that IFITM3 can promote NiV G and F proteins-mediated virus entry into MDCK cells, and IFITM3 directly interacts with the F1 subunit of NiV F protein dependent on the former's IMD and the latter's FP, which may occur after incorporation of fusion peptides into the cell membrane following virus fusion activation.


Asunto(s)
Virus Nipah , Perros , Animales , Virus Nipah/metabolismo , Células de Riñón Canino Madin Darby , Internalización del Virus , Glicoproteínas/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(30): e2123065119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858407

RESUMEN

SARS-CoV-2, the causative agent of the COVID-19 pandemic, undergoes continuous evolution, highlighting an urgent need for development of novel antiviral therapies. Here we show a quantitative mass spectrometry-based succinylproteomics analysis of SARS-CoV-2 infection in Caco-2 cells, revealing dramatic reshape of succinylation on host and viral proteins. SARS-CoV-2 infection promotes succinylation of several key enzymes in the TCA, leading to inhibition of cellular metabolic pathways. We demonstrated that host protein succinylation is regulated by viral nonstructural protein (NSP14) through interaction with sirtuin 5 (SIRT5); overexpressed SIRT5 can effectively inhibit virus replication. We found succinylation inhibitors possess significant antiviral effects. We also found that SARS-CoV-2 nucleocapsid and membrane proteins underwent succinylation modification, which was conserved in SARS-CoV-2 and its variants. Collectively, our results uncover a regulatory mechanism of host protein posttranslational modification and cellular pathways mediated by SARS-CoV-2, which may become antiviral drug targets against COVID-19.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Interacciones Huésped-Patógeno , Terapia Molecular Dirigida , Procesamiento Proteico-Postraduccional , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , COVID-19/metabolismo , COVID-19/virología , Células CACO-2 , Exorribonucleasas/metabolismo , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Sirtuinas/metabolismo , Succinatos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
13.
Virus Evol ; 8(1): veac049, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795295

RESUMEN

Coronavirus infections cause diseases that range from mild to severe in mammals and birds. In this study, we detected coronavirus infections in 748 farmed wild animals of 23 species in Guangdong, southern China, by RT-PCR and metagenomic analysis. We identified four coronaviruses in these wild animals and analysed their evolutionary origins. Coronaviruses detected in Rhizomys sinensis were genetically grouped into canine and rodent coronaviruses, which were likely recombinants of canine and rodent coronaviruses. The coronavirus found in Phasianus colchicus was a recombinant pheasant coronavirus of turkey coronavirus and infectious bronchitis virus. The coronavirus in Paguma larvata had a high nucleotide identity (94.6-98.5 per cent) with a coronavirus of bottlenose dolphin (Tursiops truncates). These findings suggested that the wildlife coronaviruses may have experienced homologous recombination and/or crossed the species barrier, likely resulting in the emergence of new coronaviruses. It is necessary to reduce human-animal interactions by prohibiting the eating and raising of wild animals, which may contribute to preventing the emergence of the next coronavirus pandemic.

14.
Virol Sin ; 37(5): 664-675, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35809785

RESUMEN

Interferon-inducible transmembrane protein 3 (IFITM3) inhibits influenza virus infection by blocking viral membrane fusion, but the exact mechanism remains elusive. Here, we investigated the function and key region of IFITM3 in blocking influenza virus entry mediated by hemagglutinin (HA). The restriction of IFITM3 on HA-mediated viral entry was confirmed by pseudovirus harboring HA protein from H5 and H7 influenza viruses. Subcellular co-localization and immunocoprecipitation analyses revealed that IFITM3 partially co-located with the full-length HA protein and could directly interact with HA2 subunit but not HA1 subunit of H5 and H7 virus. Truncated analyses showed that the transmembrane domain of the IFITM3 and HA2 subunit might play an important role in their interaction. Finally, this interaction of IFITM3 was also verified with HA2 subunits from other subtypes of influenza A virus and influenza B virus. Overall, our data demonstrate for the first time a direct interaction between IFITM3 and influenza HA protein via the transmembrane domain, providing a new perspective for further exploring the biological significance of IFITM3 restriction on influenza virus infection or HA-mediated antagonism or escape.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Interferones , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/genética
15.
J Virol ; 96(6): e0189721, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045269

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein mediates viral entry and membrane fusion. Its cleavage at S1/S2 and S2' sites during the biosynthesis in virus producer cells and viral entry are critical for viral infection and transmission. In contrast, the biological significance of the junction region between both cleavage sites for S protein synthesis and function is less understood. By analyzing the conservation and structure of S protein, we found that intrachain contacts formed by the conserved tyrosine (Y) residue 756 (Y756) with three α-helices contribute to the spike's conformational stability. When Y756 is mutated to an amino acid residue that can provide hydrogen bonds, S protein could be expressed as a cleaved form, but not vice versa. Also, the L753 mutation linked to the Y756 hydrogen bond prevents the S protein from being cleaved. Y756 and L753 mutations alter S protein subcellular localization. Importantly, Y756 and L753 mutations are demonstrated to reduce the infectivity of the SARS-CoV-2 pseudoviruses by interfering with the incorporation of S protein into pseudovirus particles and causing the pseudoviruses to lose their sensitivity to neutralizing antibodies. Furthermore, both mutations affect the assembly and production of SARS-CoV-2 virus-like particles in cell culture. Together, our findings reveal for the first time a critical role for the conserved L753-LQ-Y756 motif between S1/S2 and S2' cleavage sites in S protein synthesis and processing as well as virus assembly and infection. IMPORTANCE The continuous emergence of SARS-CoV-2 variants such as the delta or lambda lineage caused the continuation of the COVID-19 epidemic and challenged the effectiveness of the existing vaccines. Logically, the spike (S) protein mutation has attracted much concern. However, the key amino acids in S protein for its structure and function are still not very clear. In this study, we discovered for the first time that the conserved residues Y756 and L753 at the junction between the S1/S2 and S2' sites are very important, like the S2' cleavage site R815, for the synthesis and processing of S protein such as protease cleavage, and that the mutations severely interfered with the incorporation of S protein into pseudotyped virus particles and SARS-CoV-2 virus-like particles. Consequently, we delineate the novel potential target for the design of broad-spectrum antiviral drugs in the future, especially in the emergence of SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Virión , Secuencias de Aminoácidos/genética , COVID-19/virología , Humanos , Mutación , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión/metabolismo , Internalización del Virus
16.
Acta Pharmacol Sin ; 43(8): 1905-1915, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34873317

RESUMEN

Virus-induced cell death has long been thought of as a double-edged sword in the inhibition or exacerbation of viral infections. The vital role of iron, an essential element for various enzymes in the maintenance of cellular physiology and efficient viral replication, places it at the crossroads and makes it a micronutrient of competition between the viruses and the host. Viruses can interrupt iron uptake and the antioxidant response system, while others can utilize iron transporter proteins as receptors. Interestingly, the unavailability of iron facilitates certain viral infections and causes cell death characterized by lipid peroxide accumulation and malfunction of the antioxidant system. In this review, we discuss how iron uptake, regulation and metabolism, including the redistribution of iron in the host defense system during viral infection, can induce ferroptosis. Fenton reactions, a central characteristic of ferroptosis, are caused by the increased iron content in the cell. Therefore, viral infections that increase cellular iron content or intestinal iron absorption are likely to cause ferroptosis. In addition, we discuss the hijacking of the iron regulatoy pathway and the antioxidant response, both of which are typical in viral infections. Understanding the potential signaling mechanisms of ferroptosis in viral infections will aid in the development of new therapeutic agents.


Asunto(s)
Ferroptosis , Virosis , Antioxidantes/metabolismo , Antioxidantes/uso terapéutico , Muerte Celular , Humanos , Hierro/metabolismo , Peroxidación de Lípido
17.
Viral Immunol ; 34(10): 697-707, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935524

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of the porcine reproductive and respiratory syndrome, which is one of the most economically devastating diseases of the swine industry. However, whether the inactivated vaccine and modified live attenuated vaccines are effective in disease control is still controversial. Although several groups developed PRRSV virus-like particles (VLPs) as a vaccine against PRRSV, all these VLP-based vaccines targeted PRRSV-2, but not PRRSV-1 or both. Therefore, it is urgent to produce VLPs against PRRSV-1. In this study, we rescued recombinant baculovirus expressing GP5 and M proteins of PRRSV-1 through the Bac-to-Bac® baculovirus expression system. Thereafter, PRRSV VLP was obtained efficiently in the recombinant baculovirus-infected High Five insect cells. Moreover, the PRRSV VLP and PRRSV VLP+A5 could efficiently trigger specific humoral immune responses and B cellular immune responses through intranasal immunization. The combination of PRRSV VLP and A5 adjuvant could improve the level of the immune response. The PRRSV-1 VLPs generated in this study have greater potential for vaccine development to control PRRSV-1 infection.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Vacunas Virales , Animales , Anticuerpos Antivirales , Baculoviridae/genética , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Proteínas del Envoltorio Viral/genética , Vacunas Virales/genética
18.
Front Immunol ; 11: 543444, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329509

RESUMEN

Host antiviral factor interferon-induced transmembrane proteins (IFITMs) are a kind of small-molecule transmembrane proteins induced by interferon. Their broad-spectrum antiviral activity and unique ability to inhibit viral invasion have made them a hot molecule in antiviral research in recent years. Since the first demonstration of their natural ability to resist viral infection in 1996, IFITMs have been reported to limit a variety of viral infections, including some major pathogens that seriously endanger human health and social stability, such as influenza A, Ebol, severe acute respiratory syndrome, AIDS, and Zika viruses, etc. Studies show that IFITMs mainly exert antiviral activity during virus entry, specifically interfering with the fusion of the envelope and the endosome membrane or forming fusion micropores to block the virus from entering the cytoplasm. However, their specific mechanism is still unclear. This article mainly reviews the research progress in the structure, evolution, function, and mechanism of IFITMs, which may provide a theoretical basis for clarifying the molecular mechanism of interaction between the molecules and viruses and the research and development of new antiviral drugs based on IFITMs.


Asunto(s)
Citoplasma/inmunología , Inmunidad Innata , Proteínas de la Membrana/inmunología , Virosis/inmunología , Internalización del Virus , Virus/inmunología , Animales , Antivirales/uso terapéutico , Citoplasma/virología , Humanos , Virosis/tratamiento farmacológico
19.
Int J Biol Macromol ; 143: 112-117, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31805333

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes serious reproductive failure and respiratory disease in pigs. Although numerous vaccines were developed against the virus, licensed vaccines showed limited efficacy. Here, we describe the construction and optimization of Lactobacillus plantarum expression system of PRRSV GP5 gene. The wild-type truncated GP5 or codon-optimized truncated GP5 was linked with endogenous signal peptide and target peptides (DCpep or Mpep) at 5' and 3' end of the gene, respectively. Then, the fragments were cloned into the L. plantarum expression plasmid pSIP411 and expressed under the induction of SppIP. As a result, PRRSV GP5 genes with optimized codons have higher expressions than that of the GP5 genes with wild-type codons, indicating codons optimization is an effective way to enhance the expression of an exogenous gene in L. plantarum. Further analysis showed that the codon-optimized GP5 with endogenous signal peptide can be effectively displayed on the surface of the L. plantarum, and the GP5 harboring target peptide Mpep displayed the highest antigenicity than the others. The highest production of PRRSV GP5 was obtained under the following conditions: L. plantarum harboring the plasmid pSIP-1320-O5MH are induced with 200 ng/mL SppIP at 33 °C for 7 h.


Asunto(s)
Clonación Molecular , Expresión Génica , Lactobacillus plantarum/genética , Proteínas Recombinantes/genética , Proteínas del Envoltorio Viral/genética , Codón , Orden Génico , Ingeniería Genética , Plásmidos/genética , Transformación Genética
20.
Int J Biol Macromol ; 131: 925-932, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30914370

RESUMEN

Interferon-inducible transmembrane protein 3 (IFITM3) inhibits the replication of multiple pathogenic viruses by blocking their entry. In this study, we constructed a shuttle plasmid, harboring human IFITM3. Thereafter, recombinant adenovirus rAd5-IFITM3 was obtained by co-transfection of the linearized viral backbone vector pAd5 and the shuttle plasmid. The results showed that human IFITM3 did not affect the assembly and morphogenesis of progeny adenovirus. Human IFITM3 can be expressed in both A549 and MDCK cells in a time dependent manner. Furthermore, cells infected with rAd5-IFITM3 at a multiplicity of infection (MOI) of 100 for 24 h were challenged with avian influenza virus (AIV) H5N1 at an MOI of 1 for 6, 12 and 24 h. Rates of H5N1 infection in rAd5-IFITM3 cells were significantly decreased at 24 h post-infection (hpi), in a time dependent manner, compared with that of wild type wtAd5-infected cells. The expressions of viral genes were significantly inhibited at transcriptional and translational levels at 6 and 12 hpi. These results suggest that IFITM3 can suppress H5N1 replication in the early stage of the infection, which may be used as a promise agent against H5N1 infection in vivo.


Asunto(s)
Adenoviridae/genética , Clonación Molecular , Expresión Génica , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Adenoviridae/ultraestructura , Animales , Línea Celular , Perros , Orden Génico , Humanos , Subtipo H5N1 del Virus de la Influenza A , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA