Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 134
1.
Gut Liver ; 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38623061

Background/Aims: : The histological characteristics and natural history of precirrhotic primary biliary cholangitis (PBC) with portal hypertension (PH) are unclear. Our aim was to clarify the prevalence, risk factors, and histological characteristics of precirrhotic PBC patients with PH. Methods: : This retrospective study compared the clinical features, histological characteristics, and response to ursodeoxycholic acid (UDCA) between the PH and non-PH groups of precirrhotic PBC patients. Results: : Out of 165 precirrhotic PBC patients, 40 (24.2%) also had PH. According to histological stage 1, 2 and 3 disease, 5.3% (1/19), 17.3% (17/98), and 45.8% (22/48) of patients also had PH, respectively. Precirrhotic PBC with PH was significantly positively correlated with bile duct loss, degree of cytokeratin 7 positivity, and degree of fibrosis in the portal area, but significantly negatively correlated with lymphoid follicular aggregation. Compared to the non-PH group, patients in the PH group showed a higher prevalence of obliterative portal venopathy, incomplete septal fibrosis, portal tract abnormalities and non-zonal sinusoidal dilatation (p<0.05). In addition, patients with PH were more likely to present with symptoms of jaundice, ascites, epigastric discomfort, a poorer response to UDCA, and more decompensation events (p<0.05). High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values were risk factors for precirrhotic PBC with PH. Conclusions: : Approximately 24.2% of precirrhotic PBC patients have PH, which is histologically related to the injury of bile ducts. High alkaline phosphatase levels, low white blood cell counts, high Mayo scores, and high FIB-4 index values are associated with increased risk of precirrhotic PBC with PH.

2.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38641822

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , Chromatin , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
3.
RSC Adv ; 14(19): 13251-13257, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38655465

The solid oxide electrolysis cell (SOEC) is an advanced electrochemical device with a promising future in reducing CO2 emissions. Currently, the insufficient oxygen evolution reaction activity in conventional anode materials severely restricts the development of electrolytic CO2. Herein, the PNCO-LSC composite oxygen electrode was exploited by impregnating Pr2Ni0.8Co0.2O4+δ (PNCO) on the surface of La0.6Sr0.4CoO3-δ (LSC) oxygen electrode. The results of electrochemical tests and various physicochemical characterizations indicate that the infiltration of PNCO can lead to a significant improvement in the performance of the cell for CO2 electroreduction by increasing the surface oxygen exchange. The current density of the PNCO-LSC oxygen electrode infiltrated twice at 800 °C and 1.5 V reaches 0.917 A cm-2, which is about 40% higher than that of the bare LSC oxygen electrode. In addition, the single cell did not show significant degradation in a long-term stability test at a current density of 0.4 A cm-2 for 100 h of electrolysis. Therefore, the PNCO-LSC composite oxygen electrode material is effective in enhancing electrolytic CO2 performance.

4.
Medicine (Baltimore) ; 103(11): e35110, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489733

To investigate the risk factors of fear of cancer recurrence (FCR) in postoperative patients with gastric cancer (GC) and provide references for targeted nursing intervention development. A total of 84 patients who underwent GC surgery were included in this study. The fear of progression questionnaire-short form and social support rating scale were conducted, and multiple linear regression was performed to identify risk factors of FCR. The score of the fear of progression questionnaire-short form in patients with GC surgery was 39.1 ±â€…7.6. The results of multiple linear regression showed that age, education level, occupational status, course of the disease, Tumor node metastasis staging, and social support were the influencing factors of FCR in patients with GC (P < .05). The current situation of FCR in patients with GC surgery is not optimistic. The medical staff should pay more attention to patients with low age, low education level, unemployment, short course, high tumor node metastasis staging, low social support level, and other high-risk groups, and provide social support resources to reduce the level of FCR.


Phobic Disorders , Stomach Neoplasms , Humans , Linear Models , Stomach Neoplasms/surgery , Neoplasm Recurrence, Local , Fear , Regression Analysis
5.
J Hazard Mater ; 469: 133842, 2024 May 05.
Article En | MEDLINE | ID: mdl-38432088

Antibiotic exist in various states after entering agricultural soil through the application of manure, including the aqueous state (I), which can be directly absorbed by plants, and the auxiliary organic extraction state (III), which is closely associated with the pseudo-permanence of antibiotics. However, effective analytical methods for extracting and affecting factors on fractions of different antibiotic states remain unclear. In this study, KCl, acetonitrile/Na2EDTA-McIlvaine buffer, and acetonitrile/water were successively used to extract states I, II, and III of 21 antibiotics in soil, and the recovery efficiency met the quantitative requirements. Random forest classification and variance partitioning analysis revealed that dissolved organic matter, pH, and organic matter were important factors affecting the recovery efficiency of antibiotic in states I, II, and III, respectively. Additionally, 65-day spiked soil experiments combined with Mantel test analysis suggested that pH, organic acids, heavy metals, and noncrystalline minerals differentially affected antibiotic type and state. Importantly, a structural equation model indicated that organic acids play a crucial role in the fraction of antibiotic states. Overall, this study reveals the factors influencing the fraction of different antibiotic states in soil, which is helpful for accurately assessing their ecological risk.


Metals, Heavy , Soil Pollutants , Soil/chemistry , Anti-Bacterial Agents , Metals, Heavy/analysis , Agriculture , Organic Chemicals/analysis , Acetonitriles , Soil Pollutants/analysis
6.
Brain Res ; 1832: 148843, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38430996

BACKGROUND: Chronic pain is linked to cognitive impairment; however, the underlying mechanisms remain unclear. In the present study, we examined these mechanisms in a well-established mouse model of Alzheimer's disease (AD). METHODS: Neuropathic pain was modeled in 5-month-old transgenic APPswe/PS1dE9 (APP/PS1) mice by partial ligation of the sciatic nerve on the left side, and chronic inflammatory pain was modeled in another group of APP/PS1 mice by injecting them with complete Freund's adjuvant on the plantar surface of the left hind paw. Six weeks after molding, the animals were tested to assess pain threshold (von Frey filament), learning, memory (novel object recognition, Morris water maze, Y-maze, and passive avoidance), and depression-like symptoms (sucrose preference, tail suspension, and forced swimming). After behavioral testing, mice were sacrificed and the levels of p65, amyloid-ß (residues 1-42) and phospho-tau in the hippocampus and cerebral cortex were assayed using western blotting, while interleukin (IL)-1ß levels were measured by enzyme-linked immunosorbent assay. RESULTS: Animals subjected to either type of chronic pain showed lower pain thresholds, more severe deficits in learning and memory, and stronger depression-like symptoms than the corresponding control animals. Either type of chronic pain was associated with upregulation of p65, amyloid-ß (1-42), and IL-1ß in the hippocampus and cerebral cortex, as well as higher levels of phosphorylated tau. CONCLUSIONS: Chronic pain may exacerbate cognitive deficits and depression-like symptoms in APP/PS1 mice by worsening pathology related to amyloid-ß and tau and by upregulating signaling involving IL-1ß and p65.


Alzheimer Disease , Chronic Pain , Animals , Mice , Alzheimer Disease/complications , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Disease Models, Animal , Maze Learning , Memory Disorders/etiology , Mice, Transgenic , Presenilin-1/genetics
7.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-38223121

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

8.
Nat Commun ; 14(1): 8089, 2023 Dec 07.
Article En | MEDLINE | ID: mdl-38062024

The notion of topological insulators (TIs), characterized by an insulating bulk and conducting topological surface states, can be extended to higher-order topological insulators (HOTIs) hosting gapless modes localized at the boundaries of two or more dimensions lower than the insulating bulk. In this work, by performing high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements with submicron spatial and spin resolution, we systematically investigate the electronic structure and spin texture of quasi-one-dimensional (1D) HOTI candidate Bi4Br4. In contrast to the bulk-state-dominant spectra on the (001) surface, we observe gapped surface states on the (100) surface, whose dispersion and spin-polarization agree well with our ab-initio calculations. Moreover, we reveal in-gap states connecting the surface valence and conduction bands, which is a signature of the hinge states inside the (100) surface gap. Our findings provide compelling evidence for the HOTI phase of Bi4Br4. The identification of the higher-order topological phase promises applications based on 1D spin-momentum locked current in electronic and spintronic devices.

9.
Sci Rep ; 13(1): 19815, 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37957215

Traditionally, in the oil and gas industry, accelerometers are mounted externally on motors for condition monitoring of vertically suspended, closed suction hydrocarbon pumps due to their inability to withstand harsh downhole environments, preventing the detection of impeller failures. This study addresses the need for encapsulation solutions for accelerometers submerged in hydrocarbon fluid environments. It evaluates the feasibility of epoxy and fluoroelastomer as encapsulation materials for long-term immersion in high-temperature hydrocarbon fluid and determines their impact on the accelerometer's performance. Extensive testing involved submersion in high-temperature hydrocarbon fluid at 150 °C for over 10,000 h and six months in brine. Material characterization, including mass variation, microscopic imaging, and FTIR spectroscopy, revealed negligible degradation. Encapsulated accelerometers effectively detected vibrations with an acceptable alteration in amplitude. In comparison with commercial alternatives, our encapsulation outperformed them. While oil traces became evident within just 24 h in the alternatives, our solution exhibited no signs of leakage. This research pioneers a novel packaging solution employing epoxy and fluoroelastomer for side-exit commercial sensors tailored for high-temperature hydrocarbon fluid applications, addressing a critical gap in the industry. Our work enhances reliability and safety for vertical oil pump condition monitoring in downhole applications, benefiting the oil and gas sector.

10.
Acad Radiol ; 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37977890

RATIONALE AND OBJECTIVES: This study aimed to develop and evaluate a radiomics-based model combined with clinical and qualitative radiological (semantic feature [SF]) features to predict immune checkpoint inhibitor-related pneumonitis (CIP) in patients with non-small cell lung cancer (NSCLC) treated with programmed cell death protein 1 inhibitors. MATERIALS AND METHODS: This was a multicenter retrospective casecontrol study conducted from January 1, 2018, to December 31, 2022, at three centers. Patients with NSCLC treated with anti-PD1 were enrolled and randomly divided into two groups (7:3): training (n = 95) and validation (n = 39). Logistic regression (LR) and support vector machine (SVM) algorithms were used to transform features into the models. RESULTS: The study comprised 134 participants from three independent centers (male, 114/134, 85%; mean [±standard deviation] age, 63.92 [±7.9] years). The radiomics score (RS) models built based on the LR and SVM algorithms could accurately predict CIP (area under the receiver operating characteristics curve [AUC], 0.860 [0.780, 0.939] and 0.861 [0.781, 0.941], respectively). The AUCs for the RS-clinic-SF combined model were 0.903 (0.839, 0.967) and 0.826 (0.688, 0.964) in the training and validation cohorts, respectively. Decision curve analysis showed that the combined models achieved high clinical net benefit across the majority of the range of reasonable threshold probabilities. CONCLUSION: This study demonstrated that the combined model constructed by the identified features of RS, clinical features, and SF has the potential to precisely predict CIP. The RS-clinic-SF combined model has the potential to be used more widely as a practical tool for the noninvasive prediction of CIP to support individualized treatment planning.

11.
Cell Metab ; 35(12): 2107-2118.e6, 2023 12 05.
Article En | MEDLINE | ID: mdl-37863051

Fructose consumption is associated with tumor growth and metastasis in mice, yet its impact on antitumor immune responses remains unclear. Here, we show that dietary fructose modulates adipocyte metabolism to enhance antitumor CD8+ T cell immune responses and control tumor growth. Transcriptional profiling of tumor-infiltrating CD8+ T cells reveals that dietary fructose mediates attenuated transition of CD8+ T cells to terminal exhaustion, leading to a superior antitumor efficacy. High-fructose feeding initiates adipocyte-derived leptin production in an mTORC1-dependent manner, thereby triggering leptin-boosted antitumor CD8+ T cell responses. Importantly, high plasma leptin levels are correlated with elevated plasma fructose concentrations and improved antitumor CD8+ T cell responses in patients with lung cancer. Our study characterizes a critical role for dietary fructose in shaping adipocyte metabolism to prime antitumor CD8+ T cell responses and highlights that the fructose-leptin axis may be harnessed for cancer immunotherapy.


CD8-Positive T-Lymphocytes , Neoplasms , Humans , Mice , Animals , Leptin/metabolism , Neoplasms/metabolism , Immunotherapy , Lymphocyte Activation
12.
BMC Gastroenterol ; 23(1): 282, 2023 Aug 14.
Article En | MEDLINE | ID: mdl-37580680

BACKGROUND: Complications and diagnostic efficiency for liver biopsy are main concerns for clinicians. This study aimed to assess the safety and efficacy of transjugular liver biopsy (TJLB) compared with percutaneous liver biopsy (PLB) when patients had equal level of liver function and number of passes, using propensity score matching (PSM). METHODS: The clinical and pathological data of patients who received TJLB or PLB between January 2012 and October 2022 were collected. Matching factors included age, gender, cirrhosis, portal hypertension, liver function, creatinine, number of passes, hemodialysis, history of anti-coagulation and anti-platelet, and comorbidities. Coagulation indexes were not considered as matching factors due to different indications of the two techniques. RESULTS: 2711 PLBs and 30 TJLBs were evaluated. By PSM, 75 patients (50 PLBs, 25 TJLBs) were matched. The complication rates for TJLB and PLB were 4.0% (1/25) and 10.0% (5/50) (P > 0.05). Two PLBs had hepatic hemorrhage, one of which required only close monitoring (Grade 1) and the other needed hemostasis and rehydration therapy (Grade 2). The other 3 cases presented with mild abdominal pain (Grade 1). And only one TJLB presented with mild pain. The median number of complete portal tracts were 6.0 and 10.0 for TJLBs and PLBs (P < 0.05). Moreover, the median length of sample for TJLBs and PLBs were 10.0 and 16.5 mm (P < 0.05). The diagnostic efficiency of hepatopathy of unknown etiology of TJLB versus PLB groups before and after matching were 96.4% vs. 94.1% and 95.7% vs. 93.2%, respectively (P > 0.05). CONCLUSION: TJLB is an effective invasive diagnostic procedure that expands indications for liver biopsy with reliable diagnostic quality.


Hypertension, Portal , Liver Diseases , Humans , Jugular Veins/pathology , Liver/pathology , Biopsy/adverse effects , Biopsy/methods , Liver Diseases/pathology , Hypertension, Portal/etiology , Hypertension, Portal/pathology , Abdominal Pain/etiology
13.
AMB Express ; 13(1): 48, 2023 May 17.
Article En | MEDLINE | ID: mdl-37195357

Petroleum hydrocarbon contamination is of environmental and public health concerns due to its toxic components. Bioremediation utilizes microbial organisms to metabolism and remove these contaminants. The aim of this study was to enrich a microbial community and examine its potential to degrade petroleum hydrocarbon. Through successive enrichment, we obtained a bacterial consortium using crude oil as sole carbon source. The 16 S rRNA gene analysis illustrated the structural characteristics of this community. Metagenomic analysis revealed the specific microbial organisms involved in the degradation of cyclohexane and all the six BTEX components, with a demonstration of the versatile metabolic pathways involved in these reactions. Results showed that our consortium contained the full range of CDSs that could potentially degrade cyclohexane, benzene, toluene, and (o-, m-, p-) xylene completely. Interestingly, a single taxon that possessed all the genes involved in either the activation or the central intermediates degrading pathway was not detected, except for the Novosphingobium which contained all the genes involved in the upper degradation pathway of benzene, indicating the synergistic interactions between different bacterial genera during the hydrocarbon degradation.

14.
Curr Med Imaging ; 2023 Apr 26.
Article En | MEDLINE | ID: mdl-37170975

BACKGROUND: COVID-19 is a global pandemic. Currently, the predominant strain is SARS-CoV-2 Omicron subvariant BA.2 in many countries. Understanding its infection characteristics can facilitate clinical management. OBJECTIVES: This study aimed to characterize the clinical, laboratory, and high-resolution computed tomography (HRCT) findings in patients with mild or moderate infection from SARS-CoV-2 Omicron subvariant BA.2. METHODS: We performed a retrospective study on patients infected with SARS-CoV-2 Omicron subvariant BA.2 between April 4th and April 17th, 2022. The clinical characteristics, laboratory features, and HRCT images were reviewed. RESULTS: A total of 805 patients were included (411 males and 394 females, median age 33 years old). The infection was mild, moderate, severe, and asymptomatic in 490 (60.9%), 37 (4.6%), 0 (0.0%), and 278 (34.5%) patients, respectively. Notably, 186 (23.1%), 96 (11.9%), 265 (32.9%), 11 (3.4%), 7 (0.9%), and 398 (49.4%) patients had fever, cough, throat discomfort, stuffy or runny nose, fatigue, and no complaint, respectively. Furthermore, 162 (20.1%), 332 (41.2%), and 289 (35.9%) patients had decreased white blood cell counts, reduced lymphocytes, and elevated C-reactive protein levels, respectively. HRCT revealed pneumonia in 53 (6.6%) patients. The majority of the lung involvements were ground-glass opacity (50, 94.3%) mostly in the subpleural area. The grade of lung injury was mainly mild (90.6%). Short-term follow-ups showed that most patients with pneumonia recovered. CONCLUSION: Most patients with mild or moderate infection from SARS-CoV-2 Omicron subvariant BA.2 were adults, with fever and upper respiratory symptoms as the main clinical presentations. Lower respiratory infection was mild, with ground-glass opacity in the subpleural area as the main finding.

15.
Materials (Basel) ; 16(6)2023 Mar 13.
Article En | MEDLINE | ID: mdl-36984183

Due to their excellent mechanical properties and large specific surface area, graphene and its derivatives are widely used in metal matrix composites as reinforcements. In this study, the thermal reduction behavior of large-size graphene oxide are investigated systematically, and reduced graphene oxide (RGO) with few residual oxygen groups and good structural integrity is obtained. ZK61 matrix composites with varying content of in situ RGO are fabricated using the semi-powder metallurgy method. The results reveal that the addition of RGO can cause the refinement of the grains and the second phase, which is attributed to the uniform distribution of the RGO throughout the matrix. The formation of nano-MgO particles is beneficial in increasing the interfacial bonding strength between the RGO and the matrix, resulting in simultaneous increments in yield strength and elongation in the RGO/ZK61 composites. The composite containing 0.6 wt.% RGO shows a superior mechanical property, including microhardness of 79.9 HV, yield strength of 203 MPa and excellent elongation of 17.5%, with increases of 20.9%, 8.6% and 7.4%, respectively, when compared with the ZK61 alloy. Quantitative analysis indicates that the main strengthening mechanisms of RGO-reinforced magnesium matrix composites are load transfer strengthening and grain refinement strengthening.

16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 328-333, 2023 Mar.
Article Zh | MEDLINE | ID: mdl-36949694

Stomatology textbooks are an important carrier of integrated ideological and political education. The preparation of textbooks for the stomatology specialty in the new era is an important issue of concern for administrators and teachers of higher education institutions. Integrating ideological and political education in the instruction and practice composnents of academic courses on stomatology is an important issue to be resolved. Herein, we introduced the significance of ideological and political education and elaborated on the method of integrating ideological and political education in stomatology courses and textbooks from the perspectives of curriculum design, textbook compilation, teacher training, teaching evaluation, etc. We analyzed the different ways of integrating ideological and political education in stomatology courses and textbooks from the perspectives of classroom instruction, clinical practice, campus culture, social activities, and some other aspects.


Oral Medicine , Educational Status , Curriculum , Schools , Universities
17.
J Am Chem Soc ; 2023 Feb 09.
Article En | MEDLINE | ID: mdl-36757303

The development of biomimetic catalytic systems that can imitate or even surpass natural enzymes remains an ongoing challenge, especially for bioinspired syntheses that can access non-natural reactions. Here, we show how an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen (O2) reduction with synthetically beneficial chemical transformations. By developing this broadly applicable platform, the scalable synthesis of greater than 100 industrially and pharmaceutically appealing O-silylated compounds including silanols, borasiloxanes, and silyl ethers via the unprecedented aerobic oxidation of hydrosilane under ambient conditions is demonstrated. Moreover, this heterogeneous oxidase mimic also offers the potential for expanding the catalytic scope of enzymatic synthesis. We anticipate that the strategy demonstrated here will pave a new avenue for understanding the underlying nature of redox enzymes and open up a new class of material systems for artificial biomimetics.

18.
J Hazard Mater ; 449: 131031, 2023 05 05.
Article En | MEDLINE | ID: mdl-36821904

It has been increasingly documented that the hydroxyl radical (•OH) can promote the transformation of organic contaminants such as microplastics (MPs) in various environments. However, few studies have sought to identify an ideal strategy for accelerating in situ MPs degradation through boosting the process of •OH production in practical applications. In this work, iron-mineral-supplemented thermophilic composting (imTC) is proposed and demonstrated for enhancing in situ degradation of sludge-based MPs through strengthening •OH generation. The results show that the reduction efficiency of sludge-based MPs abundance was about 35.93% in imTC after treatment for 36 days, which was 38.99% higher than that of ordinary thermophilic composting (oTC). Further investigation on polyethylene-microplastics (PE-MPs) suggested that higher abundance of •OH (the maximum value was 408.1 µmol·kg-1) could be detected on the MPs isolated from imTC through microbially-mediated redox transformation of iron oxides, as compared to oTC. Analyses of the physicochemical properties of the composted PE-MPs indicated that increased •OH generation could largely accelerate the oxidative degradation of MPs. This work, for the first time, proposes a feasible strategy to enhance the reduction efficiency of MPs abundance during composting through the regulation of •OH production.


Composting , Microplastics , Sewage , Plastics , Iron
19.
Comput Biol Med ; 154: 106512, 2023 03.
Article En | MEDLINE | ID: mdl-36701964

BACKGROUND: Accurate retinal layer segmentation in optical coherence tomography (OCT) images is crucial for quantitatively analyzing age-related macular degeneration (AMD) and monitoring its progression. However, previous retinal segmentation models depend on experienced experts and manually annotating retinal layers is time-consuming. On the other hand, accuracy of AMD diagnosis is directly related to the segmentation model's performance. To address these issues, we aimed to improve AMD detection using optimized retinal layer segmentation and deep ensemble learning. METHOD: We integrated a graph-cut algorithm with a cubic spline to automatically annotate 11 retinal boundaries. The refined images were fed into a deep ensemble mechanism that combined a Bagged Tree and end-to-end deep learning classifiers. We tested the developed deep ensemble model on internal and external datasets. RESULTS: The total error rates for our segmentation model using the boundary refinement approach was significantly lower than OCT Explorer segmentations (1.7% vs. 7.8%, p-value = 0.03). We utilized the refinement approach to quantify 169 imaging features using Zeiss SD-OCT volume scans. The presence of drusen and thickness of total retina, neurosensory retina, and ellipsoid zone to inner-outer segment (EZ-ISOS) thickness had higher contributions to AMD classification compared to other features. The developed ensemble learning model obtained a higher diagnostic accuracy in a shorter time compared with two human graders. The area under the curve (AUC) for normal vs. early AMD was 99.4%. CONCLUSION: Testing results showed that the developed framework is repeatable and effective as a potentially valuable tool in retinal imaging research.


Macular Degeneration , Tomography, Optical Coherence , Humans , Tomography, Optical Coherence/methods , Retina/diagnostic imaging , Macular Degeneration/diagnostic imaging , Algorithms , Machine Learning
20.
Sci Total Environ ; 857(Pt 1): 159276, 2023 Jan 20.
Article En | MEDLINE | ID: mdl-36216057

Improving volatile fatty acid (VFA) production, rather than producing methane from the anaerobic digestion (AD) of waste, has become a new strategy of resource utilization. In regard to animal wastewater, the effectiveness of persulfate/biochar (potassium peroxodisulfate, PDS/BC) on the hydrolysis and acidogenesis stages and the reaction mechanisms are still unclear. In this study, the AD process on cow wastewater was controlled at the hydrolysis and acidification stages by setting the hydraulic retention time (HRT) at 25 days. The results showed that the contents of total solids (TS) and volatile solids (VS) were further reduced by PDS/BC treatment with 0.15 gPDS/gTS of PDS added. The VFAs production increased by 12.4 % from day 0 to 25 compared to the blank set. Based on our molecular analysis, the rate of increase for the dissolved organic matter with low molecular weight (0-10 kDa) was 699.5 mg/(L·d) in the first 10 days. The change rate increased nearly 2.1 times, leading to higher VFAs yield. Moreover, the activities of fermentative bacteria were enhanced and Anaerocella was determined to be the specific and critical genus. However, excessive PDS (0.3 gPDS/gTS) prolonged the acidification period and caused the inactivation of fermentative bacteria. Structural equation modeling demonstrated that PDS can directly affect VFAs yield and also had an indirect effect by influencing the decomposition of particulate matter and microbial activities. Therefore, the enhancement of VFAs production using the PDS/BC method could be due to synergistic chemical and microbial effects. Findings from this study can provide a practical strategy to enhance the VFAs production of AD technology for livestock wastewater and help reveal the reaction mechanism of PDS/BC treatment.


Bioreactors , Wastewater , Cattle , Animals , Female , Anaerobiosis , Bioreactors/microbiology , Fatty Acids, Volatile , Methane , Sewage/chemistry , Bacteria
...