Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Poult Sci ; 103(12): 104321, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39361997

RESUMEN

The circadian clock is crucial for maintaining lipid metabolism homeostasis in mammals. Despite the economic importance of fat content in poultry, research on the regulatory effects and molecular mechanisms of the circadian clock on avian hepatic lipid metabolism has been limited. In this study, we observed significant diurnal variations (P<0.05) in triglyceride (TG), free fatty acids (FFA), fatty acid synthase (FAS), and total cholesterol (TC) levels in the chicken embryonic liver under 12-h light/12-h dark incubation conditions, with TG, FFA, and TC concentrations showing significant cosine rhythmic oscillations (P<0.05). However, such rhythmic variations were not observed under complete darkness incubation conditions. Using transcriptome sequencing technology, we identified 157 genes significantly upregulated at night and 313 genes significantly upregulated during the 12-h light/12-h dark cycle. These circadian differential genes are involved in processes and pathways such as lipid catabolic process regulation, meiotic cell cycle, circadian rhythm regulation, positive regulation of the MAPK cascade, and glycerolipid metabolism. Weighted gene co-expression network analysis (WGCNA) revealed 3 modules-green, blue, and red-that significantly correlate with FFA, FAS, and TG, respectively. Genes within these modules were enriched in processes and pathways including the cell cycle, light stimulus response, circadian rhythm regulation, phosphorylation, positive regulation of the MAPK cascade, and lipid biosynthesis. Notably, we identified ten hub genes, including protein kinase C delta (PRKCD), polo like kinase 4 (PLK4), clock circadian regulator (CLOCK), steroid 5 alpha-reductase 3 (SRD5A3), BUB1 mitotic checkpoint serine/threonine kinase (BUB1B), shugoshin 1 (SGO1), NDC80 kinetochore complex component (NDC80), NIMA related kinase 2 (NEK2), minichromosome maintenance complex component 4 (MCM4), polo like kinase 1 (PLK1), potentially link circadian regulation with lipid metabolic homeostasis. These findings demonstrate the regulatory role of the circadian clock in chicken liver lipid metabolism homeostasis and provide a theoretical basis and molecular targets for optimizing the circadian clock to reduce excessive fat deposition in chickens, which is significant for the healthy development of the poultry industry.

2.
Clin Transl Med ; 14(10): e70038, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39358938

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, but the molecular mechanisms underlying IBD are incompletely understood. In this study, we explored the role and regulating mechanism of otubain 2 (OTUB2), a deubiquitinating enzyme, in IBD. METHODS: To study the function of OTUB2 in IBD, we generated Otub2-/- mice and treated them with dextran sulfate sodium (DSS) to induce experimental colitis. Bone marrow transplantation was performed to identify the cell populations that were affected by OTUB2 in colitis. The molecular mechanism of OTUB2 in signal transduction was studied by various biochemical methods. RESULTS: OTUB2 was highly expressed in colon-infiltrating macrophages in both humans with IBD and mice with DSS-induced experimental colitis. Colitis was significantly aggravated in Otub2-/- mice and bone marrow chimeric mice receiving Otub2-/- bone marrow. OTUB2-deficiency impaired the production of cytokines and chemokines in macrophages in response to the NOD2 agonist muramyl dipeptide (MDP). Upon MDP stimulation, OTUB2 promoted NOD2 signaling by stabilizing RIPK2. Mechanistically, OTUB2 inhibited the proteasomal degradation of RIPK2 by removing K48-linked polyubiquitination on RIPK2, which was mediated by the active C51 residue in OTUB2. In mice, OTUB2 ablation abolished the protective effects of MDP administration in colitis. CONCLUSION: This study identified OTUB2 as a novel regulator of intestinal inflammation.


Asunto(s)
Proteína Adaptadora de Señalización NOD2 , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor , Transducción de Señal , Animales , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Ratones , Proteína Adaptadora de Señalización NOD2/metabolismo , Humanos , Colitis/metabolismo , Colitis/inducido químicamente , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Endogámicos C57BL , Inflamación/metabolismo , Ubiquitinación
3.
Front Hum Neurosci ; 18: 1445397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323957

RESUMEN

Introduction: Deaf students have more difficulties with emotion regulation due to their hearing loss. They are suffering higher socio-emotional risk than the hearing person. But there are few studies explored the neural mechanisms of impaired emotion regulation in the deaf college students. Methods: Thirty hearing college students and 27 deaf college students completed the emotion regulation task while recording ERP data and subjective emotion intensity. Results: Behavioral results found that deaf college students had higher emotional experience intensity compared to healthy controls. The ERP results showed the deaf college students had lower LPP amplitudes both using reappraisal and suppression strategies. Moreover, the LPP of expression suppression was associated with the increase of depression scores among deaf college students. Discussion: Deaf college students may have impaired emotion regulation so that they are more accustomed to using expression suppression strategies to regulate their negative emotions which lead to high risk to be depression.

4.
EMBO Rep ; 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333628

RESUMEN

Inflammatory bowel disease (IBD) is a disorder causing chronic inflammation in the gastrointestinal tract, and its pathophysiological mechanisms are still under investigation. Here, we find that mice deficient of YOD1, a deubiquitinating enzyme, are highly susceptible to dextran sulfate sodium (DSS)-induced colitis. The bone marrow transplantation experiment reveals that YOD1 derived from hematopoietic cells inhibits DSS colitis. Moreover, YOD1 exerts its protective role by promoting nucleotide-binding oligomerization domain 2 (NOD2)-mediated physiological inflammation in macrophages. Mechanistically, YOD1 inhibits the proteasomal degradation of receptor-interacting serine/threonine kinase 2 (RIPK2) by reducing its K48 polyubiquitination, thereby increasing RIPK2 abundance to enhance NOD2 signaling. Consistently, the protective function of muramyldipeptide, a NOD2 ligand, in experimental colitis is abolished in mice deficient of YOD1. Importantly, YOD1 is upregulated in colon-infiltrating macrophages in patients with colitis. Collectively, this study identifies YOD1 as a novel regulator of colitis.

5.
Reproduction ; 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39312648

RESUMEN

Hypoxia is closely associated with physiological and pathological conditions in the human body, and the myometrium is affected by hypoxic stress during pregnancy and delivery. Autophagy is a catabolic pathway involved in the regulation of apoptosis, proliferation and migration of a variety of cells, which can be activated under hypoxia. However, the mechanism and function of autophagy in uterine smooth muscle cells remained unclear. The aim of this study was to investigate the changes of autophagy in pregnant uterine smooth muscle cells (pUSMCs) under hypoxia and the effect of autophagy on myometrial cells proliferation during pregnancy. In this study, primary uterine smooth muscle cells were isolated from mice in late pregnancy and cultured under normoxic and hypoxic conditions respectively. Western blotting and immunofluorescence were used to detect the expression levels of autophagy-related proteins LC3B, P62, mTOR and p-mTOR under different culture conditions. Cell proliferation was assessed by CCK-8 assay. In addition, 3-Methyladenine (3-MA) was used to inhibit autophagy in hypoxia-treated pUSMCs and MHY1485 was used to activate mTOR. Studies have confirmed that under hypoxic conditions, autophagy is enhanced and cell proliferative viability is reduced in pUSMCs. Autophagy inhibitor 3-MA restored cell proliferation inhibited by hypoxia. Furthermore, hypoxia in pUSMCs led to a downregulation of p-mTOR/mTOR levels. The mTOR activator MHY1485 inhibited autophagy by preventing the binding of autophagosomes to lysosomes and reversed the hypoxia-induced inhibition of cell proliferation. Collectively, our results indicate that hypoxia upregulates autophagy through the mTOR pathway in pUSMCs, thereby inhibiting cell proliferation during pregnancy.

6.
Microorganisms ; 12(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39338588

RESUMEN

Lake microbiota play a crucial role in geochemical cycles, influencing both energy flow and material production. However, the distribution patterns of bacterial communities in lake sediments remain largely unclear. In this study, we used 16S rRNA high-throughput sequencing technology to investigate the bacterial structure and diversity in sediments across different locations (six independent lakes) within Lianhuan Lake and analyzed their relationship with environmental factors. Our findings revealed that both the alpha and beta diversity of sediment bacterial communities varied significantly among the six independent lakes. Furthermore, changes between lakes had a significant impact on the relative abundance of bacterial phyla, such as Pseudomonadota and Chloroflexota. The relative abundance of Pseudomonadota was highest in Habuta Lake and lowest in Xihulu Lake, while Chloroflexota abundance was lowest in Habuta Lake and highest in Tiehala Lake. At the genus level, the relative abundance of Luteitalea was highest in Xihulu Lake compared to the other five lakes, whereas the relative abundances of Clostridium, Thiobacillus, and Ilumatobacter were highest in Habuta Lake. Mantel tests and heatmaps revealed that the relative abundance of Pseudomonadota was significantly negatively correlated with pH, while the abundance of Chloroflexota was significantly positively correlated with total phosphorus and total nitrogen in water, and negatively correlated with electrical conductivity. In conclusion, this study significantly enhances our understanding of bacterial communities in the different lakes within the Lianhuan Lake watershed.

7.
Poult Sci ; 103(11): 104208, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39190999

RESUMEN

The earlobes of chickens exhibit a range of colors, but there has been relatively little research on the formation of structural blue earlobes. Previous results showed that the structural color earlobes were related to the interplay between melanin and collagen in light reflection. To investigate the metabolic differences in these earlobe colors, we conducted nontargeted liquid chromatograph mass spectrometer (LC-MS) for metabolomic sequencing on structural blue (Green and Blue groups) and nonstructural color (Black group) earlobes tissue of Jiangshan black-bone chickens. The content detection in earlobe tissues of different groups shows that there were significant differences in melanin and collagen content between the Black and Green group. The metabolome identified a total of 6,102 mass spectroscopic peaks and ultimately identified 919 annotated metabolites. Variable importance in the projection (VIP) analysis identified the common differential expressed metabolites (DMs) "Tyr Thr Ala Glu" among the 3 groups. By combining those DMs with differentially expressed genes (DEGs) in our previous transcriptome data from the same sample, and associated with KEGG pathway analysis, multiple pathways related to melanogenesis and collagen metabolism were enriched across the 3 groups. By analyzing the metabolites and genes in these pathways, as well as the interaction network diagram of DEGs, we identified some key genes, Wnt Family Member 6 (WNT6), Transcription Factor 7 (TCF7), Proopiomelanocortin (POMC) and Calcium/Calmodulin Dependent Protein Kinase II Alpha (CAMK2A), and some key DMs like DG (11M3/9M5/0:0) and gentisic acid. The differential gene expression and metabolic levels affect the production of melanin and collagen, leading to differences in the content in melanin and the thickness of the collagen layer between earlobe colors, while the thickness of the collagen layer could affect light scattering, ultimately resulting in different colored earlobes in Jiangshan black-bone chickens.


Asunto(s)
Pollos , Pigmentación , Animales , Pollos/genética , Metabolómica , Colágeno/metabolismo , Colágeno/genética , Melaninas/metabolismo , Metaboloma , Pabellón Auricular , Color
8.
Plants (Basel) ; 13(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39204744

RESUMEN

Fiber length (FL) and strength (FS) are the core indicators for evaluating cotton fiber quality. The corresponding stages of fiber elongation and secondary wall thickening are of great significance in determining FL and FS formation, respectively. QTL mapping and high-throughput sequencing technology have been applied to dissect the molecular mechanism of fiber development. In this study, 15 cotton chromosome segment substitution lines (CSSLs) with significant differences in FL and FS, together with their recurrent parental Gossypium hirsutum line CCRI45 and donor parent G. barbadense line Hai1, were chosen to conduct RNA-seq on developing fiber samples at 10 days post anthesis (DPA) and 20 DPA. Differentially expressed genes (DEGs) were obtained via pairwise comparisons among all 24 samples (each one with three biological repeats). A total of 969 DEGs related to FL-high, 1285 DEGs to FS-high, and 997 DEGs to FQ-high were identified. The functional enrichment analyses of them indicated that the GO terms of cell wall structure and ROS, carbohydrate, and phenylpropanoid metabolism were significantly enriched, while the GO terms of glucose and polysaccharide biosynthesis, and brassinosteroid and glycosylphosphatidylinositol metabolism could make great contributions to FL and FS formation, respectively. Weighted gene co-expressed network analyses (WGCNA) were separately conducted for analyzing FL and FS traits, and their corresponding hub DEGs were screened in significantly correlated expression modules, such as EXPA8, XTH, and HMA in the fiber elongation and WRKY, TDT, and RAC-like 2 during secondary wall thickening. An integrated analysis of these hub DEGs with previous QTL identification results successfully identified a total of 33 candidate introgressive DEGs with non-synonymous mutations between the Gh and Gb species. A common DEG encoding receptor-like protein kinase 1 was reported to likely participate in fiber secondary cell thickening regulation by brassionsteroid signaling. Such valuable information was conducive to enlightening the developing mechanism of cotton fiber and also provided an abundant gene pool for further molecular breeding.

9.
Brain Sci ; 14(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39199481

RESUMEN

To better understand the individual differences in fairness, we used event-related potentials (ERPs) to explore the fairness characteristics of deaf college students through the ultimatum game task. Behaviorally, the significant main effect of the proposal type was found, which meant both deaf and hearing college students showed a lower acceptance rate for the more unfair proposal. Interestingly, we found a significant interaction between group and proposal type in the early stage (N1). Moreover, in the deaf college group, N1 (induced by moderately and very unfair proposals) was significantly larger than that of fair proposals. However, we found that deaf college students had smaller amplitudes on P2 and P3 than hearing college students. These results suggested that deaf college students might pursue more equity strongly so they are more sensitive to unfair information in the early stage. In a word, we should provide more fair allocations for deaf college students in our harmonious society.

10.
Reprod Sci ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134923

RESUMEN

This study aimed to explore the different characteristics between early-onset severe preeclampsia (ESPE) and late-onset severe preeclampsia (LSPE) to improve pregnancy outcomes. We performed a retrospective cohort study between January 2016 and December 2021. Eligible hospitalized pregnant women with severe preeclampsia were assigned into the early-onset or late-onset group, depending on the gestational age at the time of severe preeclampsia onset (< or ≥ 34 gestational weeks, respectively). The clinical characteristics, laboratory results, maternal complications, and fetal and neonatal outcomes were recorded and compared between the two groups. A total of 1,238 pregnant women were included, with 525 in the early-onset group and 713 in the late-onset group. The late-onset group had more cases of gestational diabetes, whereas the early-onset group had a higher blood pressure, showed more proteinuria, had more liver and renal damage, exhibited more serious adverse maternal, fetal, and neonatal outcomes, was more likely to be admitted to the intensive care unit, and required longer hospital stays (all P < 0.05). In addition, the early-onset group had fewer prenatal care appointments and was more often transferred from a primary or secondary care hospital. The logistic regression analysis showed that a weekly weight gain of > 100 g was a risk factor for ESPE and that fewer prenatal care appointments were a risk factor for ESPE in pregnant women with female fetuses. Moreover, logistic regression analysis indicated that nulliparity and gestational diabetes during the current pregnancy were risk factors for LSPE. In conclusion, compared with the women with LSPE, those with ESPE usually had worse maternal, fetal, and neonatal outcomes. More frequent prenatal screening and care should be provided for pregnant women with high-risk factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA