Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 945
1.
J Am Chem Soc ; 146(19): 13399-13405, 2024 May 15.
Article En | MEDLINE | ID: mdl-38698691

Structural motifs containing nitrogen-nitrogen (N-N) bonds are prevalent in a large number of clinical drugs and bioactive natural products. Hydrazine (N2H4) serves as a widely utilized building block for the preparation of these N-N-containing molecules in organic synthesis. Despite its common use in chemical processes, no enzyme has been identified to catalyze the incorporation of free hydrazine in natural product biosynthesis. Here, we report that a hydrazine transferase catalyzes the condensation of N2H4 and an aromatic polyketide pathway intermediate, leading to the formation of a rare N-aminolactam pharmacophore in the biosynthesis of broad-spectrum antibiotic albofungin. These results expand the current knowledge on the biosynthetic mechanism for natural products with N-N units and should facilitate future development of biocatalysts for the production of N-N-containing chemicals.


Hydrazines , Hydrazines/chemistry , Hydrazines/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/pharmacology , Streptomyces/enzymology , Streptomyces/metabolism , Lactams/chemistry , Lactams/metabolism , Pharmacophore
2.
Small Methods ; : e2400517, 2024 May 19.
Article En | MEDLINE | ID: mdl-38763921

The defects have a remarkable influence on the electronic structures and the electric transport behaviors of the matter, providing the additional means to engineering their physical properties. In this work, a comprehensive study on the effect of Br-vacancies on the electronic structures and transport behaviors in the high-order topological insulator Bi4Br4 is performed by the combined techniques of the scanning tunneling microscopy (STM), angle-resolved photoemission spectroscopy (ARPES), and physical properties measurement system along with the first-principle calculations. The STM results show the defects on the cleaved surface of a single crystal and reveal that the defects are correlated to the Br-vacancies with the support of the simulated STM images. The role of the Br-vacancies in the modulation of the band structures has been identified by ARPES spectra and the calculated energy-momentum dispersion. The relationship between the Br-vacancies and the semiconducting-like transport behaviors at low temperature has been established, implying a Mott variable ranging hopping conduction in Bi4Br4. The work not only resolves the unclear transport behaviors in this matter, but also paves a way to modulate the electric conduction path by the defects engineering.

3.
Phytochemistry ; 223: 114139, 2024 May 13.
Article En | MEDLINE | ID: mdl-38750707

Eleven undescribed isoquinoline alkaloids (1-8, 14, 15, and 24), along with 19 analogues (9-13, 16-23, and 25-30) were isolated from the barks of Alangium salviifolium. The structures of the undescribed compounds were elucidated through the analysis of their HR-ESI-MS, 1D and 2D NMR, IR, UV, and X-ray diffraction. The absolute configuration of 8 was established via the ECD calculation. Notably, compounds 1/2 and 3/4 were two pairs of C-14 epimers. The isolated alkaloids were evaluated for their cytotoxicity against various cancer cell lines, including SGC-7901, HeLa, K562, A549, BEL-7402, HepG2, and B16, ß-carboline-benzoquinolizidine (14-22) and cepheline-type (24-28) alkaloids exhibited remarkable cytotoxicity, with IC50 values ranging from 0.01 to 48.12 µM. Remarkably, compounds 17 and 21 demonstrated greater cytotoxicity than the positive control doxorubicin hydrochloride. Furthermore, a significant proportion of these bioactive alkaloids possess a C-1' epimer configuration. The exploration of their structure-activity relationship holds promise for directing future investigations into alkaloids derived from Alangium, potentially leading to novel insights and therapeutic advancements.

4.
Pharmacol Rev ; 76(3): 414-453, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697854

Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.


Antineoplastic Agents , Neoplasms , Proto-Oncogene Proteins c-mdm2 , Humans , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Molecular Targeted Therapy
5.
Angew Chem Int Ed Engl ; : e202319908, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693057

Upon pathogenic stimulation, activated neutrophils release nuclear DNA into the extracellular environment, forming web-like DNA structures known as neutrophil extracellular traps (NETs), which capture and kill bacteria, fungi, and cancer cells. This phenomenon is commonly referred to as NETosis. Inspired by this, we introduce a cell surface-constrained web-like framework nucleic acids traps (FNATs) with programmable extracellular recognition capability and cellular behavior modulation. This approach facilitates dynamic key chemical signaling molecule recognition such as adenosine triphosphate (ATP), which is elevated in the extracellular microenvironment, and triggers FNA self-assembly. This, in turn, leads to in situ tightly interwoven FNAs formation on the cell surface, thereby inhibiting target cell migration. Furthermore, it activates a photosensitizer-capturing switch, chlorin e6 (Ce6), and induces cell self-destruction. This cascade platform provides new potential tools for visualizing dynamic extracellular activities and manipulating cellular behaviors using programmable in situ self-assembling DNA molecular devices.

6.
J Appl Clin Med Phys ; : e14376, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695849

PURPOSE: To propose a straightforward and time-efficient quality assurance (QA) approach of beam time delay for respiratory-gated radiotherapy and validate the proposed method on typical respiratory gating systems, Catalyst™ and AlignRT™. METHODS: The QA apparatus was composed of a motion platform and a Winston-Lutz cube phantom (WL3) embedded with metal balls. The apparatus was first scanned in CT-Sim and two types of QA plans specific for beam on and beam off time delay, respectively, were designed. Static reference images and motion testing images of the WL3 cube were acquired with EPID. By comparing the position differences of the embedded metal balls in the motion and reference images, beam time delays were determined. The proposed approach was validated on three linacs with either Catalyst™ or AlignRT™ respiratory gating systems. To investigate the impact of energy and dose rate on beam time delay, a range of QA plans with Eclipse (V15.7) were devised with varying energy and dose rates. RESULTS: For all energies, the beam on time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 92.13 ± $ \pm $ 5.79 ms, 123.11 ± $ \pm $ 6.44 ms, and 303.44 ± $ \pm $ 4.28 ms, respectively. The beam off time delays in AlignRT™ V6.3.226, AlignRT™ V7.1.1, and Catalyst™ were 121.87 ± $ \pm $ 1.34 ms, 119.33 ± $ \pm $ 0.75 ms, and 97.69 ± $ \pm $ 2.02 ms, respectively. Furthermore, the beam on delays decreased slightly as dose rates increased for all gating systems, whereas the beam off delays remained unaffected. CONCLUSIONS: The validation results demonstrate the proposed QA approach of beam time delay for respiratory-gated radiotherapy was both reproducible and time-efficient to practice for institutions to customize accordingly.

7.
Chin Med ; 19(1): 68, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741130

BACKGROUND: Myocarditis refers to an autoimmune inflammatory response of the myocardium with characterization of self-reactive CD4+ T cell activation, which lacks effective treatment and has a poor prognosis. Acacetin is a natural flavonoid product that has been reported to have anti-inflammatory effects. However, acacetin has not been investigated in myocarditis. METHODS: Oral acacetin treatment was administered in an experimental autoimmune myocarditis model established with myosin heavy chain-alpha peptide. Echocardiography, pathological staining, and RT-qPCR were used to detect cardiac function, myocardial injury, and inflammation levels. Flow cytometry was utilized to detect the effect of acacetin on CD4+ T cell function. RNA-seq, molecular docking, and microscale thermophoresis (MST) were employed to investigate potential mechanisms. Seahorse analysis, mitoSOX, JC-1, and mitotracker were utilized to detect the effect of acacetin on mitochondrial function. RESULTS: Acacetin attenuated cardiac injury and fibrosis as well as heart dysfunction, and reduced cardiac inflammatory cytokines and ratio of effector CD4+ T and Th17 cells. Acacetin inhibited CD4+ T cell activation, proliferation, and Th17 cell differentiation. Mechanistically, the effects of acacetin were related to reducing mitochondrial complex II activity thereby inhibiting mitochondrial respiration and mitochondrial reactive oxygen species in CD4+ T cells. CONCLUSION: Acacetin may be a valuable therapeutic drug in treating CD4+ T cell-mediated myocarditis.

8.
Sci Data ; 11(1): 347, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582751

CO2 electroreduction has garnered significant attention from both the academic and industrial communities. Extracting crucial information related to catalysts from domain literature can help scientists find new and effective electrocatalysts. Herein, we used various advanced machine learning, natural language processing techniques and large language models (LLMs) approaches to extract relevant information about the CO2 electrocatalytic reduction process from scientific literature. By applying the extraction pipeline, we present an open-source corpus for electrocatalytic CO2 reduction. The database contains two types of corpus: (1) the benchmark corpus, which is a collection of 6,985 records extracted from 1,081 publications by catalysis postgraduates; and (2) the extended corpus, which consists of content extracted from 5,941 documents using traditional NLP techniques and LLMs techniques. The Extended Corpus I and II contain 77,016 and 30,283 records, respectively. Furthermore, several domain literature fine-tuned LLMs were developed. Overall, this work will contribute to the exploration of new and effective electrocatalysts by leveraging information from domain literature using cutting-edge computer techniques.

9.
Mol Med Rep ; 29(6)2024 Jun.
Article En | MEDLINE | ID: mdl-38606517

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the tumour images shown in Fig. 6B on p. 8 were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes, which had either already been published or were under consideration for publication at around the same time. Owing to the fact that the contentious data in the above article were already under consideration for publication prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 23: 439, 2021; DOI: 10.3892/mmr.2021.12078].

10.
Front Microbiol ; 15: 1361756, 2024.
Article En | MEDLINE | ID: mdl-38591034

Phyllosphere microbes residing on plant leaf surfaces for maintaining plant health have gained increasing recognition. However, in desert ecosystems, knowledge about the variety, composition, and coexistence patterns of microbial communities in the phyllosphere remains limited. This study, conducted across three basins (Turpan-TLF, Tarim-CL, and Dzungaria-MSW) and three seasons (spring, summer, and autumn) in Xinjiang, China, aimed to explore the diversity and composition of microbial communities in the phyllosphere, encompassing both bacteria and fungi in Alhagi sparsifolia. We also investigated the co-occurrence patterns, influencing factors, and underlying mechanisms driving these dynamics. Results indicate that phyllosphere bacteria exhibited lower diversity indices (ACE, Shannon, Simpson, Fisher phylogenetic diversity, and Richness) in spring compared to summer and autumn, while the Goods Coverage Index (GCI) was higher in spring. Conversely, diversity indices and GCI of phyllosphere fungi showed an opposite trend. Interestingly, the lowest level of multi-functionality and niche width in phyllosphere bacteria occurred in spring, while the highest level was observed in phyllosphere fungi. Furthermore, the study revealed that no significant differences in multi-functionality were found among the regions (CL, MSW, and TLF). Network analysis highlighted that during spring, phyllosphere bacteria exhibited the lowest number of nodes, edges, and average degree, while phyllosphere fungi had the highest. Surprisingly, the multi-functionality of both phyllosphere bacteria and fungi showed no significant correlation with climatic and environmental factors but displayed a significant association with the morphological characteristics and physicochemical properties of leaves. Structural Equation Model indicated that the morphological characteristics of leaves significantly influenced the multi-functionality of phyllosphere bacteria and fungi. However, the indirect and total effects of climate on multi-functionality were greater than the effects of physicochemical properties and morphological characteristics of leaves. These findings offer new insights into leaf phyllosphere microbial community structure, laying a theoretical foundation for vegetation restoration and rational plant resource utilization in desert ecosystems.

11.
Article En | MEDLINE | ID: mdl-38629676

Background: Due to the limited role of chronic pain medication in military personnel and the distress caused to the military population, mindfulness-based therapy has been considered for the follow-up treatment of military personnel with chronic pain. The purpose of this review is to explore the effect and the implementation of mindfulness-based therapy for the military population with chronic pain. Methods: The keywords for the search included "mindfulness" AND ("pain" OR "chronic pain") AND ("military" OR "veteran"). The PubMed, Embase, and Cochrane Library databases were searched. The Cochrane Collaboration tool was used to independently assess the risk of bias of the included randomized controlled trials, and the Newcastle-Ottawa Scale was used to independently assess the risk of bias of the included case-control studies. Results: A total of 175 papers were identified; 65 duplicates were excluded, and 59 papers that did not meet the inclusion criteria were excluded after reading the titles and abstracts. The remaining 51 papers were read in full, 42 of which did not meet the inclusion criteria. Nine papers met the inclusion criteria and were included in the study. The nine studies included 507 veterans and 56 active-duty female military personnel. All pain interventions were mindfulness-based therapy, and all of them were integrated into or adapted from standard mindfulness courses. The results all showed that after mindfulness-based therapy, the relevant indicators improved. Conclusions: Mindfulness-based therapy is an effective treatment method for the military population with chronic pain. The review indicates that future research should focus on the best setting for mindfulness-based therapy, including the course content and time.

12.
bioRxiv ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38617291

Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivity analysis to identify brain networks essential for cognition. We identified a core assembly of functional connectomes, primarily located within the association cortex, which showed superior predictive performance compared to two conventional methods widely employed in previous research across various cognitive domains. Our approach achieved a mean prediction accuracy of 0.13 across 16 cognitive tasks, including working memory, reading comprehension, and sustained attention, outperforming the traditional methods' accuracy of 0.08. In contrast, our method showed limited predictive power for sensory, motor, and emotional functions, with a mean prediction accuracy of 0.03 across 9 relevant tasks, slightly lower than the traditional methods' accuracy of 0.04. These cognitive connectomes were further characterized by distinctive patterns of resting-state functional connectivity, structural connectivity via white matter tracts, and gene expression, highlighting their neurogenetic underpinnings. Our findings reveal a domain-general functional network fingerprint that pivotal to cognition, offering a novel computational approach to explore the neural foundations of cognitive abilities.

13.
Open Life Sci ; 19(1): 20220866, 2024.
Article En | MEDLINE | ID: mdl-38633413

We recruited four aquaporin-4 seropositive optic neuritis patients (five eyes) who received glucocorticoid treatment and underwent optical coherence tomography examination. Baseline medians of the macular ganglion cell layer plus inner plexiform layer (mGCIPL) thickness and volume for the eye of interest were 79.67 µm (73.664 ± 18.497 µm) and 0.58 mm3 (0.534 ± 0.134 mm3), respectively. At 2 months, the medians of the mGCIPL thickness and volume were 60.00 µm (51.576 ± 12.611 µm) and 0.44 mm3 (0.376 ± 0.091 mm3), respectively. At 6 months, the medians of the mGCIPL thickness and volume were 59.55 µm (46.288 ± 11.876 µm) and 0.44 mm3 (0.336 ± 0.084 mm3), respectively. Sample size estimate was achieved using two methods based on the mGCIPL thickness and volume data, with five effect sizes considered. The estimate based on the mGCIPL volume showed that 206 patients were needed at the 6-month follow-up; the power was 80% and effect size was 20%. In conclusion, this study detected retinal damage in aquaporin-4 seropositive optic neuritis patients by optical coherence tomography, and estimated the sample size for two-sample parallel designed clinical trials using two methods.

14.
J Cancer Educ ; 39(3): 253-263, 2024 Jun.
Article En | MEDLINE | ID: mdl-38430453

Chinese young adults (CYA), who are at an increasing risk of developing nonalcoholic fatty liver disease (NAFLD), which in turn increases the risk of liver cancer, are an ideal target population to deliver educational interventions to improve their awareness and knowledge of NAFLD and consequently reduce their risk of developing NAFLD. The purpose of this study was to determine the efficacy of two interventions to improve awareness and knowledge of NAFLD among CYA for the prevention of liver cancer. Between May and July 2021, 1373 undergraduate students aged 18 to 25 years in one university in China completed a web-based, self-administered survey distributed through WeChat app. One week after completion of the baseline survey, all eligible participants were randomly assigned to a pamphlet, a video intervention, or no intervention (control group), with follow-up assessments immediately and 1-month post-intervention. The 7-page pamphlet or 6.5-min video had information on NAFLD. Self-assessments included NAFLD awareness, lean NAFLD awareness, and knowledge scores of NAFLD. About 26% of participants had NAFLD awareness at baseline. Compared with controls, participants in both interventions showed significant improvement of awareness of NAFLD (pamphlet, + 46.0%; video, + 44.3%; control, + 18.7%; OR [95% CI], 3.13 [2.19-4.47] and 2.84 [1.98-4.08]), awareness of lean NAFLD (pamphlet, + 41.2%; video, + 43.0%; control, + 14.5%; OR [95% CI], 2.84 [1.62-4.99] and 2.61 [1.50-4.54]), and knowledge score of NAFLD (pamphlet, + 64.2%; video, + 68.9%; control, - 1.0%; OR [95% CI], 1.62 [1.47-1.80] and 1.67 [1.50-1.86]) at immediately post-intervention. Delivering NAFLD education through a pamphlet or video intervention was effective in improving the awareness and knowledge of NAFLD among CYA.


Health Knowledge, Attitudes, Practice , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/prevention & control , Male , Female , Young Adult , Adult , Adolescent , China , Liver Neoplasms/prevention & control , Pamphlets , Health Education , Surveys and Questionnaires , Students/psychology , East Asian People
15.
J Neurosci ; 2024 Mar 25.
Article En | MEDLINE | ID: mdl-38527807

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographic architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long term memory is less relevant. In this way, our study suggests that the topographic organization of the FPCN, as well as the connections it forms with distant regions of cortex, are important influences on how this system supports flexible behavior.Significance Statement Adaptive behavior depends on adjudicating between specific rules that vary across situations. The frontoparietal control network (FPCN) helps guide this process through its interactions with other brain regions. We examined how local topographical features support this function of the FPCN. Subnetworks within the FPCN share key anatomical and functional features with adjacent systems linked to external attention and long-term knowledge. This topographic architecture supports the emergence of distinct interaction patterns: FPCN subnetworks act cohesively when long-term memory can support behavior, but segregate when long-term memory is not aligned with current goals. Our study shows that, in addition to dynamic interaction with spatially distant cortical regions, local topographical features of the FPCN play a significant role in flexible behavior.

16.
Adv Sci (Weinh) ; : e2310115, 2024 Mar 16.
Article En | MEDLINE | ID: mdl-38491872

In this work, 2D ferromagnetic M3 GeTe2 (MGT, M = Ni/Fe) nanosheets with rich atomic Te vacancies (2D-MGTv ) are demonstrated as efficient OER electrocatalyst via a general mechanical exfoliation strategy. X-ray absorption spectra (XAS) and scanning transmission electron microscope (STEM) results validate the dominant presence of metal-O moieties and rich Te vacancies, respectively. The formed Te vacancies are active for the adsorption of OH* and O* species while the metal-O moieties promote the O* and OOH* adsorption, contributing synergistically to the faster oxygen evolution kinetics. Consequently, 2D-Ni3 GeTe2v exhibits superior OER activity with only 370 mV overpotential to reach the current density of 100 mA cm-2 and turnover frequency (TOF) value of 101.6 s-1 at the overpotential of 200 mV in alkaline media. Furthermore, a 2D-Ni3 GeTe2v -based anion-exchange membrane (AEM) water electrolysis cell (1 cm2 ) delivers a current density of 1.02 and 1.32 A cm-2 at the voltage of 3 V feeding with 0.1 and 1 m KOH solution, respectively. The demonstrated metal-O coordination with abundant atomic vacancies for ferromagnetic M3 GeTe2 and the easily extended preparation strategy would enlighten the rational design and fabrication of other ferromagnetic materials for wider electrocatalytic applications.

17.
Anal Chem ; 96(11): 4657-4664, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38456390

Polyvinyl alcohol (PVA) with abundant hydroxyl groups (-OH) has been widely used for membranes, hydrogels, and films, and its function is largely affected by the alcoholysis degree. Therefore, the development of rapid and accurate methods for alcoholysis degree determination in PVAs is important. In this contribution, we have proposed a novel fluorescence-based platform for probing the alcoholysis degree of PVA by using the (E)-N-(4-methoxyphenyl)-1-(quinolin-2-yl)methanimine (QPM)-Zn2+ complex as the reporter. The mechanism study disclosed that the strong coordination between -OH and Zn2+ induced the capture of the QPM-Zn2+ complex and promoted its subsequent immobilization into the noncrystalline area. The immobilization of the QPM-Zn2+ complex restricted its molecular rotation and reduced the nonirradiative transition, thus yielding bright emissions. In addition, the practical applications of this proposed method were further validated by the accurate alcoholysis degree determination of blind PVA samples with the confirmation of the National Standard protocol. It is expected that the developed fluorescence approach in this work might become an admissive strategy for screening the alcoholysis degree of PVA.

18.
Pancreas ; 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38530976

OBJECTIVES: Acute pancreatitis (AP) has a high incidence of hospitalizations, morbidity, and mortality worldwide. A growing number of studies on AP pathogenesis are based on caerulein-induced experimental model, which simulates human AP in vivo. It has been demonstrated that both pancreatic acinar cells and peritoneal macrophages are involved in pancreatic inflammation and damage. However, their connection has not been well understood. METHODS: A caerulein-induced AP model was established on the pancreatic acinar cell line AR42J. Rat macrophages were isolated from the peritoneal cavity. The effects of caerulein-induced pancreatic exosomes on the peritoneal macrophage and pancreas in vivo and in vitro were examined. The underlying molecular mechanism was investigated by exploring the regulatory role of downstream molecules. RESULTS: We found that exosomes derived from caerulein-treated AR42J cells induced rat peritoneal macrophage M1 polarization and pyroptosis. miR-24-3p was upregulated in caerulein-stimulated exosomes, whereas the miR-24-3p inhibitor counteracted the effect of pancreatic exosomes on peritoneal macrophage M1 polarization and pyroptosis. Furthermore, miR-24-3p inhibited March3 expression, whereas MARCH3 mediated NLRP3 ubiquitination in rat peritoneal macrophages, which, in turn, contributed to the apoptosis, reactive oxygen species production, and inflammation in AR42J cells. CONCLUSIONS: Exosomes derived from caerulein-stimulated pancreatic acinar cells mediate peritoneal macrophage M1 polarization and pyroptosis via an miR-24-3p/MARCH3/NLRP3 axis in AP.

19.
Commun Biol ; 7(1): 308, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467823

Heparin-induced thrombocytopenia (HIT) is an adverse reaction to heparin leading to a reduction in circulating platelets with an increased risk of thrombosis. It is precipitated by polymerized immune complexes consisting of pathogenic antibodies that recognize a small chemokine platelet factor 4 (PF4) bound to heparin. Characterization of these immune complexes is extremely challenging due to the enormous structural heterogeneity of such macromolecular assemblies and their constituents. Native mass spectrometry demonstrates that up to three PF4 tetramers can be assembled on a heparin chain, consistent with the molecular modeling studies showing facile polyanion wrapping along the polycationic belt on the PF4 surface. Although these assemblies can accommodate a maximum of only two antibodies, the resulting immune complexes are capable of platelet activation despite their modest size. Taken together, these studies provide further insight into molecular mechanisms of HIT and other immune disorders where anti-PF4 antibodies play a central role.


Heparin , Thrombocytopenia , Humans , Heparin/adverse effects , Antigen-Antibody Complex , Platelet Factor 4/metabolism , Thrombocytopenia/chemically induced , Blood Platelets/metabolism , Immunologic Factors
20.
Small ; : e2311129, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319033

Constructing concentration differences between anions and cations at the ends of an ionic conductor is an effective strategy in electricity generation for powering wearable devices. Temperature gradient or salinity gradient is the driving force behind such devices. But their corresponding power generation devices are greatly limited in actual application due to their complex structure and harsh application conditions. In this study, a novel ionic concentration gradient electric generator based on the evaporation difference of the electrolyte is proposed. The device can be constructed without the need for semipermeable membranes, and operation does not need to build a temperature difference. As a demonstration, a PVA-Na ionic hydrogel is prepared as an electrolyte for the device and achieved a thermovoltage of more than 200 mV and an energy density of 77.94 J m-2 at 323 K. Besides, the device exhibits the capability to sustain a continuous voltage output for a duration exceeding 1500 min, as well as enabling charging and discharging cycles for 100 iterations. For practical applications, a module comprising 16 sub-cells is constructed and successfully utilized to directly power a light-emitting diode. Wearable devices and their corresponding cell modules are also developed to recycle body heat.

...