Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 381(6655): 269-270, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37471554

RESUMEN

A combined thermal and electrochemical device enhances voltage and hydrogen production.

2.
ACS Appl Mater Interfaces ; 14(41): 46972-46979, 2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36215717

RESUMEN

Passive daytime radiative cooling, which reflects sunlight and simultaneously emits heat into space to cool surfaces without energy input, is a promising strategy for energy conservation. Integrating radiative cooling with building systems can tremendously alleviate electrical cooling, but manufacturing high-efficient and eco-friendly coatings remains an urgent and challenging task. Here, we present a simple and scale-up strategy for fabricating ultrawhite coatings consisting of porous ethyl cellulose matrix-random BaSO4 nanoparticles utilizing green solvents. With the synergistic effect of the ideal intrinsic properties of the materials and the strong Mie scattering of the porous structure, the ultrawhite coating possesses a record solar reflectance of 98.6% and a thermal emittance of 98.1%, resulting in a subambient temperature drop of over 2.5 °C under a solar intensity of ∼920 W m-2. Better yet, our coatings can be conveniently brushed, rolled, or sprayed onto various types of substrates, with excellent durability, self-cleaning, and cost-effectiveness, paving an attractive and viable pathway for large-scale applications in practical buildings.

3.
Adv Mater ; 33(24): e2100141, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33963780

RESUMEN

Zero liquid discharge (ZLD), which maximizes water recovery and eliminates environmental impact, is an urgent wastewater management strategy for alleviating freshwater shortage. However, because of the high concentration of salts and broad-spectrum foulants in wastewater, a huge challenge for ZLD is lack of a robust membrane-based desalination technology that enables direct wastewater recovery without costly pretreatment processes. Here, a paradigm-shift membrane distillation (MD) strategy is presented, wherein the traditional hydrophobic porous membrane is replaced with a hydrophilic nonporous charge-gradient hydrogel (CGH) membrane that possesses hypersaline tolerance, fouling/scaling-free properties, and negligible vapor transfer resistance inside the membrane, simultaneously. Therefore, the CGH-based MD with high water flux enables direct desalination of hypersaline wastewater (130 g L-1 ) containing broad-spectrum foulants (500 mg L-1 ) during continuous long-term operation (200 h), and this technology paves a promising way to direct ZLD for wastewater management.

4.
ACS Nano ; 15(3): 5486-5494, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626276

RESUMEN

Recently, wearable and breathable healthcare devices for air filtering and real-time vital signs monitoring have become urgently needed since virus and particulate matter (PM) cause serious health issues. Herein, we present a trap-induced dense monocharged hybrid perfluorinated electret nanofibrous membrane (HPFM) for highly efficient ultrafine PM0.3 removal with an efficiency of 99.712% under low pressure drop (38.1 Pa) and high quality factor of 0.154 Pa-1. Furthermore, a recyclable multifunctional healthcare mask is constructed by integrating the HPFM-based nanogenerator, which realizes efficient PM0.3 filtering and wireless real-time human respiration monitoring simultaneously. More importantly, the performance of this mask is still relatively stable even at 100%RH humidity and 92 °C temperature conditions for 48 h, which infers that it can be reused after disinfection. The strategy of fabricating HPFM provides an approach to obtain charge-rich stable electret materials, and the design of multifunctional masks demonstrates their potential application for future personal protection and health monitoring devices.


Asunto(s)
Filtros de Aire , Nanofibras , Atención a la Salud , Humanos , Material Particulado
5.
Science ; 370(6514): 342-346, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32913001

RESUMEN

Low-grade heat (below 373 kelvin) is abundant and ubiquitous but is mostly wasted because present recovery technologies are not cost-effective. The liquid-state thermocell (LTC), an inexpensive and scalable thermoelectric device, may be commercially viable for harvesting low-grade heat energy if its Carnot-relative efficiency (ηr) reaches ~5%, which is a challenging metric to achieve experimentally. We used a thermosensitive crystallization and dissolution process to induce a persistent concentration gradient of redox ions, a highly enhanced Seebeck coefficient (~3.73 millivolts per kelvin), and suppressed thermal conductivity in LTCs. As a result, we achieved a high ηr of 11.1% for LTCs near room temperature. Our device demonstration offers promise for cost-effective low-grade heat harvesting.

6.
Adv Mater ; 32(5): e1902034, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31206809

RESUMEN

Following the rapid development of lightweight and flexible smart electronic products, providing energy for these electronics has become a hot research topic. The human body produces considerable mechanical and thermal energy during daily activities, which could be used to power most wearable electronics. In this context, fiber-based energy conversion devices (FBECD) are proposed as candidates for effective conversion of human-body energy into electricity for powering wearable electronics. Herein, functional materials, fiber fabrication techniques, and device design strategies for different classes of FBECD based on piezoelectricity, triboelectricity, electrostaticity, and thermoelectricity are comprehensively reviewed. An overview of fiber-based self-powered systems and sensors according to their superior flexibility and cost-effectiveness is also presented. Finally, the challenges and opportunities in the field of fiber-based energy conversion are discussed.

7.
ACS Appl Mater Interfaces ; 11(4): 3984-3989, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30604618

RESUMEN

By virtue of simple fabrication, low cost, and high conversion efficiency, nanogenerators play a key role in promoting the development of self-powered systems and large-scale mechanical energy harvesting. Efforts have been ongoing for improving the output power of nanogenerators by maximizing their surface charge density via surface modification or structure optimization. Nevertheless, because of inevitable air breakdown during the operation process, enhancing charge density is not retainable, which is the most crucial limitation for the output performance of nanogenerators. Here, a suppressing breakdown strategy is developed to remarkably enhance the output charge density of the nanogenerator by embedding a dielectric film (polyvinylidene fluoride) with high permittivity into air gaps. Because of the air breakdown suppression and strongly field-induced dielectric polarization effect, the output charge density of ∼470 µC m-2 is obtained at ambient condition, which is ∼4 times larger than the value of the conventional nanogenerator with air breakdown. In addition, the effects of different dielectric materials and their different thicknesses are also studied for enhancing the output charge density of the nanogenerator. These results provide a guide to design the state-of-the-art nanogenerator for efficient mechanical energy harvesting.

8.
Research (Wash D C) ; 2019: 2460953, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31912029

RESUMEN

Direct conversion of the tremendous and ubiquitous low-grade thermal energy into electricity by thermogalvanic cells is a promising strategy for energy harvesting. The environment is one of the richest and renewable low-grade thermal source. However, critical challenges remain for all-day electricity generation from environmental thermal energy due to the low frequency and small amplitude of temperature fluctuations in the environment. In this work, we report a tandem device consisting of a polypyrrole (PPy) broadband absorber/radiator, thermogalvanic cell, and thermal storage material (Cu foam/PEG1000) that integrates multiple functions of heating, cooling, and recycling of thermal energy. The thermogalvanic cell enables continuous utilization of environmental thermal energy at both daytime and nighttime, yielding maximum outputs as high as 0.6 W m-2 and 53 mW m-2, respectively. As demonstrated outdoors by a large-scale prototype module, this design offers a feasible and promising approach to all-day electricity generation from environmental thermal energy.

9.
Nat Commun ; 9(1): 5146, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30514952

RESUMEN

Thermogalvanic cells offer a cheap, flexible and scalable route for directly converting heat into electricity. However, achieving a high output voltage and power performance simultaneously from low-grade thermal energy remains challenging. Here, we introduce strong chaotropic cations (guanidinium) and highly soluble amide derivatives (urea) into aqueous ferri/ferrocyanide ([Fe(CN)6]4-/[Fe(CN)6]3-) electrolytes to significantly boost their thermopowers. The corresponding Seebeck coefficient and temperature-insensitive power density simultaneously increase from 1.4 to 4.2 mV K-1 and from 0.4 to 1.1 mW K-2 m-2, respectively. The results reveal that guanidinium and urea synergistically enlarge the entropy difference of the redox couple and significantly increase the Seebeck effect. As a demonstration, we design a prototype module that generates a high open-circuit voltage of 3.4 V at a small temperature difference of 18 K. This thermogalvanic cell system, which features high Seebeck coefficient and low cost, holds promise for the efficient harvest of low-grade thermal energy.

10.
ACS Appl Mater Interfaces ; 10(35): 29675-29683, 2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-30106276

RESUMEN

Flexible pressure sensors possess promising applications in artificial electronic skin, intelligence robot, wearable health monitoring, flexible physiological signal sensing, etc. Herein, we design a flexible pressure sensor with robust stability, high sensitivity, and large linear pressure region on the basis of tetrafluoroethylene-hexafluoropropylene-vinylide (THV)/cyclic olefin copolymer (COC) piezoelectret nanogenerator. According to the theoretical analysis for piezoelectret nanogenerators with imbalanced charge distribution, THV and COC are utilized to promote the electric field inside the piezoelectret for output voltage enhancement. Meanwhile, the compression property of the piezoelectret nanogenerator is facilely tuned. Owing to high inner electric field and optimized compression property, the THV/COC piezoelectret nanogenerator exhibits a high sensitivity of 30 mV/kPa, which is 10 times higher than that of the traditional cellular polypropylene piezoelectret. Simultaneously, the linear pressure region reaches 150 kPa with excellent linearity ( R2 = 0.99963). The device is demonstrated to realize wearable pressure sensing with a wide pressure range from finger typing to fist hammering. This study presents a fabrication strategy for piezoelectret nanogenerators with high sensitivity and large linear pressure region, paving the way for development of wearable and flexible pressure sensing networks.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nanotecnología/instrumentación , Presión , Electricidad , Diseño de Equipo
11.
ACS Appl Mater Interfaces ; 10(9): 8010-8015, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29405693

RESUMEN

Energy harvesting and storage are two distinct processes that are generally achieved using two separated parts based on different physical and chemical principles. Here we report a self-charging electrokinetic supercapacitor that directly couples the energy harvesting and storage processes into one device. The device consists of two identical carbon nanotube/titanium electrodes, separated by a piece of anodic aluminum oxide nanochannels membrane. Pressure-driven electrolyte flow through the nanochannels generates streaming potential, which can be used to charge the capacitive electrodes, accomplishing simultaneous energy generation and storage. The device stores electric charge density of 0.4 mC cm-2 after fully charging under pressure of 2.5 bar. This work may offer a train of thought for the development of a new type of energy unit for self-powered systems.

12.
Glob Chall ; 2(5-6): 1800001, 2018 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-31565334

RESUMEN

Water distillation with solar thermal technology could be one of the most promising way to address the global freshwater scarcity, with its low cost and minimum environmental impacts. However, the low liquid water productivity, which is caused by the heat loss and inadequate heat utilization in solar-thermal conversion process, hinders its practical application. Here, a compact solar-thermal membrane distillation system with three structure features: highly localized solar-thermal heating, effective cooling strategy, and recycling the latent heat, is proposed. The steam generation rate is 0.98 kg m-2 h-1 under solar illumination of 1 kW m-2 in the open system, while the liquid water productivity could be 1.02 kg m-2 h-1 with the solar efficiency up to 72% with a two-level device. The outdoor experiments show a water productivity of 3.67 kg m-2 with salt rejection over 99.75% in one cloudy day. These results demonstrate an easy and high-efficiency way for water distillation, especially suitable for household solar water purification.

13.
Biomacromolecules ; 18(12): 3904-3912, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-28992405

RESUMEN

Chitosan has biocompatibility and biodegradability; however, the practical use of the bulk chitosan materials is hampered by its poor strength, which can not satisfy the mechanical property requirement of organs. Thus, the construction of highly strong chitosan-based materials has attracted much attention. Herein, the high strength nanofibrous hydrogels and films (CS-E) were fabricated from the chitosan solution in LiOH/KOH/urea aqueous system via a mild regenerating process. Under the mild condition (ethanol at low temperature) without the severe fluctuation in the system, the alkaline-urea shell around the chitosan chains was destroyed, and the naked chitosan molecules had sufficient time for the orderly arrangement in parallel manner to form relatively perfect nanofibers. The nanofibers physically cross-linked to form CS-E hydrogels, which could be easily oriented by drawing to achieve a maximum orientation index of 84%, supported by the scanning electron microscopy and two-dimensional wide-angle X-ray diffraction. The dried CS-E films could be bent and folded arbitrarily to various complex patterns and shapes. The oriented CS-E films displayed even ultrahigh tensile strength (282 MPa), which was 5.6× higher than the chitosan films prepared by the traditional acid dissolving method. The CS-E hydrogels possessed hierarchically porous structure, beneficial to the cell adhesion, transportation of nutrients, and removal of metabolic byproducts. The cell assay results demonstrated that the CS-E hydrogels were no cytotoxicity, and osteoblastic cells could adhere, spread, and proliferate well on their surface. Furthermore, the oriented CS-E hydrogels could regulate the directional growth of osteoblastic cells along the orientation direction, on the basis of the filopodia of the cells to extend and adhere on the nanofibers. This work provided a novel approach to construct the oriented high strength chitosan hydrogels and films.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Quitosano/administración & dosificación , Quitosano/química , Nanofibras/administración & dosificación , Nanofibras/química , Células 3T3 , Animales , Materiales Biocompatibles/química , Adhesión Celular/efectos de los fármacos , Línea Celular , Hidrogeles/química , Ratones , Osteoblastos/efectos de los fármacos , Resistencia a la Tracción/efectos de los fármacos , Agua/química
14.
ACS Appl Mater Interfaces ; 9(17): 15052-15057, 2017 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-28402107

RESUMEN

Solar-enabled steam generation has attracted increasing interest in recent years because of its potential applications in power generation, desalination, and wastewater treatment, among others. Recent studies have reported many strategies for promoting the efficiency of steam generation by employing absorbers based on carbon materials or plasmonic metal nanoparticles with well-defined pores. In this work, we report that natural wood can be utilized as an ideal solar absorber after a simple flame treatment. With ultrahigh solar absorbance (∼99%), low thermal conductivity (0.33 W m-1 K-1), and good hydrophilicity, the flame-treated wood can localize the solar heating at the evaporation surface and enable a solar-thermal efficiency of ∼72% under a solar intensity of 1 kW m-2, and it thus represents a renewable, scalable, low-cost, and robust material for solar steam applications.

15.
J Mater Chem B ; 5(43): 8446-8450, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-32264511

RESUMEN

Biocompatible hydrogels with high strength, high precision patterns, and arbitrary 3D shapes are extremely desired soft platforms in the biomedicine fields. On the basis of the thermal-reversible sol-gel transition of agarose and the formation of nanofibers below 35 °C, a robust and thermoplastic hydrogel (TPG) was fabricated by in situ polymerization of acrylamide in the agarose matrix. The tensile fracture stress/strain values of the TPG were unexpectedly higher than those of both agarose and polyacrylamide hydrogels as a result of the double networks reinforced with nanofibers. The TPG could reversibly soften and harden by heating and cooling treatment, respectively, leading to an excellent mechanical recoverability and reprocessing ability. Thus, arbitrary 3D-shaped hydrogels and micro-patterns embossed on the TPG surface with a high resolution of 1 µm were constructed. The rigid TPG exhibited a remarkable affinity for the adhesion and proliferation of cells. In particular, the TPGs with microgrooves could highly guide the oriented growth of osteoblasts, showing potential applications in the field of tissue engineering.

16.
Soft Matter ; 13(2): 345-354, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27901170

RESUMEN

Smart hydrogel actuators with excellent biocompatibility and biodegradation are extremely desired for biomedical applications. Herein, we have constructed bio-hydrogel actuators inspired by the bilayer structures of plant organs from chitosan and cellulose/carboxymethylcellulose (CMC) solution in an alkali/urea aqueous system containing epichlorohydrin (ECH) as a crosslinker, and demonstrated tight adhesion between two layers through strong electrostatic attraction and chemical crosslinking. The bilayer hydrogels with excellent mechanical properties could carry out rapid, reversible, and repeated self-rolling deformation actuated by pH-triggered swelling/deswelling, and transformed into rings, tubules, and flower-, helix-, bamboo-, and wave-like shapes by effectively designing the geometric shape and size. The significant difference in the swelling behavior between the positively charged chitosan and the negatively charged cellulose/CMC layers generated enough force to actuate the performance of the hydrogels as soft grippers, smart encapsulators, and bioinspired lenses, showing potential applications in a wide range of fields including biomedicine, biomimetic machines, etc.

17.
Adv Mater ; 28(36): 8037-8044, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27380145

RESUMEN

An ultra-stretchable and force-sensitive hydrogel with surface self-wrinkling microstructure is demonstrated by in situ synthesizing polyacrylamide (PAAm) and polyaniline (PANI) in closely packed swollen chitosan microspheres, exhibiting ultra-stretchability (>600%), high sensitivity (0.35 kPa-1 ) for subtle pressures (<1 kPa), and can detect force in a broad range (102 Pa-101 MPa) with excellent electrical stability and rapid response speed, potentially finding applications for E-skin.

18.
Chem Commun (Camb) ; 51(2): 338-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25407892

RESUMEN

Novel magnetic cellulose-TiO2 nanocomposite microspheres with high surface areas and magnetic susceptibility were fabricated, which exhibited remarkably selective enrichment of trace phosphopeptides from peptide mixtures.


Asunto(s)
Celulosa/química , Imanes/química , Nanocompuestos/química , Fosfopéptidos/aislamiento & purificación , Titanio/química , Campos Magnéticos , Magnetismo , Nanocompuestos/ultraestructura , Fosfopéptidos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
ACS Appl Mater Interfaces ; 6(3): 1872-8, 2014 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-24405277

RESUMEN

Novel onion-like and multi-layered tubular cellulose hydrogels were constructed, for the first time, from the cellulose solution in a 7% NaOH/12% urea aqueous solvent by changing the shape of the gel cores. In our findings, the contacting of the cellulose solution with the surface of the agarose gel rod or sphere loaded with acetic acid led to the close chain packing to form immediately a gel layer, as a result of the destruction of the cellulose inclusion complex by acid through inducing the cellulose self-aggregation. Subsequently, multi-layered cellulose hydrogels were fabricated via a multi-step interrupted gelation process. The size, layer thickness and inter-layer space of the multi-layered hydrogels could be controlled by adjusting the cellulose concentrations, the gel core diameter and the contacting time of the solid-liquid interface. The multi-layered cellulose hydrogels displayed good architectural stability and solvent resistance. Moreover, the hydrogels exhibited high compressive strength and excellent biocompatibility. L929 cells could adhere and proliferate on the surface of the layers and in interior space, showing great potential as tissue engineering scaffolds and cell culture carrier. This work opens up a new avenue for the construction of the high strength multi-layered cellulose hydrogels formed from inner to outside via a fast contact of solid-liquid interface.


Asunto(s)
Celulosa/química , Celulosa/farmacología , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Tamaño de la Partícula , Animales , Materiales Biocompatibles/farmacología , Línea Celular , Forma de la Célula/efectos de los fármacos , Fuerza Compresiva , Ratones , Microscopía Fluorescente , Modelos Teóricos , Estrés Mecánico
20.
J Mater Chem B ; 1(4): 485-492, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-32260819

RESUMEN

In this work, arbitrarily shaped multi-membrane hydrogels were successfully fabricated from gel-core templates using the layer-by-layer (LbL) method. Namely, the first gel membrane layer was formed around a gel-core template when the crosslinker loaded gel-core was soaked in a polysaccharide solution, and it was then ripened in a crosslinker solution, in which the crosslinker was loaded for the fabrication of the following layer. The formation and control of the gel membrane layer were studied in detail. The results indicated that a reasonably rapid crosslinking of the polysaccharide was essential for the successful preparation of a multi-membrane hydrogel, irrespective of chemical or physical crosslinking. The formation of a gel membrane layer was found to be controlled by the diffusion of the crosslinker. The chemically and the physically crosslinked multi-membrane hydrogels were characterized, and the chemically crosslinked chitosan multi-membrane hydrogel exhibited a unique sub-layered microstructure. The chitosan multi-membrane hydrogel which was sensitive to pH was fabricated using terephthalaldehyde as the crosslinker, and the hydrogel displayed LbL disintegration in acidic medium. Chondrocytes were cultivated in the presence of the multi-membrane hydrogel, and they could be easily attached to proliferate quickly. Because of the arbitrary shape, solid or hollow structure, pH sensitivity and biocompatibility, the polysaccharide multi-membrane hydrogels are promising materials for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA