Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 588
1.
Heliyon ; 10(10): e30910, 2024 May 30.
Article En | MEDLINE | ID: mdl-38778933

According to the Standard of Chinese Medicinal Materials of Shaanxi Province (2015 edition), Salvia miltiorrhiza caulis et folium is the dried stems and leaves of Salvia miltiorrhiza, which could activate blood and dispell blood stasis, clear the mind and remove annoyance. In this study, the dynamic absorption changes of phenolic acids (FS) and phenolic acids-flavonoids (FT) in rats after oral administration were studied by UPLC-TQ/MS/MS, to elucidate the pharmacokinetics of seven major bioactive components of the stem-leaf of Salvia miltiorrhiza in vivo. The results showed that the pharmacokinetic parameters of FS and FT were significantly different in normal rats and model rats. Compared with the control group, after injecting 10 % polymer dextran 500 into the tail vein to establish a model of microcirculation disturbance, the Cmax of caffeic acid decreased. The Cmax of rosmarinic acid and lithospermic acid increased. Danshensu showed a decrease in CLz/F, accompanied by an increase in both AUC0-t and AUC0-∞. The AUC0-t of lithospermic acid was also increased. These results indicated that microcirculation disturbance could decrease the absorption of caffeic acid while increasing the absorption of danshensu, rosmarinic acid and lithospermic acid. After oral administration of FT, the Cmax of danshensu and the AUC0-t of caffeic acid were increased significantly, suggesting that the presence of flavonoids may promote the absorption and exposure of phenolic acids in vivo. This study provides a reference for the elucidation of the in vivo substances and the mechanisms of action of FS and FT from the stem-leaf of Salvia miltiorrhiza.

2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2402-2409, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812141

Due to the highly stable structure of keratin, the extraction and dissolution steps of animal medicines rich in keratin are complex, which seriously restricts the detection efficiency and flux. Therefore, this study simplified the pre-treatment steps of horn samples and optimized the detection methods of characteristic peptides to improve the efficiency of identifying the specificity of horn-derived animal medicines. For detection of the characteristic peptides in horn-derived animal medicines treated with/without iodoace-tamide(IAA), the ion pair conditions of the characteristic peptides were optimized, and the retention time, intensity and other data of the specific peptides were compared between the samples treated with/without IAA. Two pre-treatment methods, direct enzymatic hydrolysis and total protein extraction followed by enzymatic hydrolysis, were used to prepare horn-derived animal medicine samples. The effects of different methods on the detection of specific peptides in the samples of Saiga antelope horn, water buffalo horn, goat horn, and yak horn were compared regarding the retention time of specific peptides and ion intensity. The results indicated that after direct enzymatic hydrolysis, the specific peptides in the samples without IAA treatment can be detected. Compared with the characteristic peptides in the samples treated with IAA, their retention time shifted back and the mass spectrometry response slightly decreased. The specific peptides of the samples without IAA treatment had good specificity and did not affect the specificity identification of horn-derived animal medicines. Overall, the process of direct enzymatic hydrolysis can be used to treat horn samples, omitting the steps of protein extraction and dithiothreitol and IAA treatment, significantly improving the pre-treatment efficiency without affecting the specificity identification of horn-derived animal medicines. This study provides ideas for quality research and standard improvement of horn-derived animal medicines.


Horns , Keratins , Peptides , Animals , Horns/chemistry , Peptides/chemistry , Keratins/chemistry , Cattle , Goats , Buffaloes , Chromatography, High Pressure Liquid
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2828-2840, 2024 May.
Article Zh | MEDLINE | ID: mdl-38812182

The food security of China as a big agricultural country is attracting increasing attention. With the progress in the traditional Chinese medicine industry, Chinese medicinal materials and their preparations have been gradually developed as agents for disease prevention and with antimicrobial and insecticidal functions in agriculture. Promoting pesticide innovation by interdisciplinary integration has become the trend in pesticide research globally. Considering the increasingly important roles of green pesticides from traditional Chinese medicines and artificial intelligence in pest target prediction, this paper proposed an innovative green control strategy in line with the concepts of ecological sustainable development and food security protection. CiteSpace was used for visual analysis of the publications. The results showed that artificial intelligence had been extensively applied in the pesticide field in recent years. This paper explores the application and development of biopesticides for the first time, with focus on the plant-derived pesticides. The thought of traditional Chinese medicine compatibility can be employed to creat a new promosing field: pesticides from traditional Chinese medicine. Moreover, artificial intelligence can be employed to build the formulation system of pesticides from traditional Chinese medicines and the target prediction system of diseases and pests. This study provides new ideas for the future development and market application of biopesticides, aiming to provide more healthy and safe agricultural products for human beings, promote the innovation and development of green pesticides in China, and protect the sustainable development of the environment and ecosystem. This may be the research hotspot and competition point for the green development of the pesticide industry chain in the future.


Artificial Intelligence , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Pesticides , Pesticides/chemistry , Drugs, Chinese Herbal/chemistry , Animals , Green Chemistry Technology/methods , Humans
4.
Zhongguo Zhong Yao Za Zhi ; 49(7): 1705-1716, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812183

Traditional Chinese medicine proteins(TCMPs) not only have nutritional values and biological activities but also serve as key enzymes in the synthesis of pharmacodynamic components in traditional Chinese medicines. They play a role in the synthesis of pharmacodynamic components by regulating biosynthesis and selective synthesis pathways and controlling drug quality and stability. The recent years have witnessed great progress in the research on the structures and functions of proteins using various methods and technologies. However, the research on the structures and functions of TCMPs lags behind. Therefore, it is urgent to study the structures and functions of TCMPs using modern means to promote the discovery of innovative drugs based on TCMPs and clarify the synthesis pathways of pharmacodynamic components. This study introduces the latest techniques for studying protein structures and functions, including spectroscopy, mass spectrometry, nuclear magnetic resonance, X-ray crystal diffraction, microscopy, and structure prediction. Furthermore, this paper introduces the methods for protein functional studies, including liquid chromatography-mass spectrometry, co-immunoprecipitation, yeast two-hybrid, and pull-down assay. By systematically reviewing these techniques and methods, this paper provides technical references for the structural identification and functional studies of TCMPs, with the aim of promoting the in-depth exploration of the structures and functions of TCMPs.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Proteins/chemistry , Proteins/metabolism , Humans , Mass Spectrometry
5.
Int J Biol Macromol ; 270(Pt 2): 132391, 2024 May 17.
Article En | MEDLINE | ID: mdl-38761914

Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.

6.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621986

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Caffeic Acids , Coumaric Acids , Diabetes Mellitus, Experimental , Drugs, Chinese Herbal , Oleanolic Acid , Rats , Animals , Rats, Sprague-Dawley , Quercetin , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Drugs, Chinese Herbal/pharmacokinetics
7.
Nat Prod Res ; : 1-7, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38586937

A phytochemical investigation of the aerial parts of Mitracarpus hirtus afforded thirteen compounds, including a new naphthoquinone di-glycoside (1), three isopentenyl isoflavones (2-4), four flavonoids (5-8), three iridoid glycosides (9 - 11) and two coumarins (12 and 13). Their structures were elucidated based on extensive spectroscopic analyses, chemical methods, and the comparison with the literature. Among them, compound 1 possesses a 2-(3-methylnaphthalen-2-yl)acetic acid core with two glucosyl groups, compounds 2-4 are the first three representatives from the Rubiaceae family, and compounds 9-11 and 13 were isolated from Mitracarpus genus for the first time. Additionally, compounds 2-4 displayed potent antibacterial activities against Helicobacter pylori G27/HP159/JRES00015 (MIC = 4-16 µg/mL) , comparable to metronidazole. To date, wighteone (2) is the most active isoflavone with favourable predicted ADMET properties reported against H. pylori.

8.
J Ethnopharmacol ; 329: 118158, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38614263

ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.


Coronary Disease , Fibrinolytic Agents , Molecular Docking Simulation , Network Pharmacology , Trichosanthes , Animals , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Fibrinolytic Agents/chemistry , Coronary Disease/drug therapy , Rats , Male , Trichosanthes/chemistry , Zebrafish , Rats, Sprague-Dawley , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Medicine, Chinese Traditional/methods
9.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38636578

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Antihypertensive Agents , Hypertension , Medicine, Chinese Traditional , Metabolomics , Network Pharmacology , Rats, Inbred SHR , Animals , Hypertension/drug therapy , Hypertension/physiopathology , Male , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Rats , Medicine, Chinese Traditional/methods , Blood Pressure/drug effects , Antelopes , Liver/drug effects , Liver/metabolism , Liver/pathology , Horns , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Disease Models, Animal
10.
Phytomedicine ; 128: 155385, 2024 Jun.
Article En | MEDLINE | ID: mdl-38569292

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Azoxymethane , Colorectal Neoplasms , Dextran Sulfate , Drugs, Chinese Herbal , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Drugs, Chinese Herbal/pharmacology , Colorectal Neoplasms/drug therapy , Mice , Male , Disease Models, Animal , Metabolome/drug effects , Colon/drug effects , Colon/pathology , Colon/microbiology
11.
J Ethnopharmacol ; 330: 118191, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38621468

ETHNOPHARMACOLOGICAL RELEVANCE: The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY: The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS: Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS: MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.


Cell Differentiation , Core Binding Factor Alpha 1 Subunit , Drugs, Chinese Herbal , Mesenchymal Stem Cells , Osteogenesis , Osteoporosis , Ovariectomy , RNA, Messenger , Animals , Female , Rats , Cell Differentiation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Osteoporosis/drug therapy , Rats, Sprague-Dawley , RNA, Messenger/metabolism
12.
Carbohydr Polym ; 333: 122003, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38494201

The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3ß, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.


Antioxidants , NF-E2-Related Factor 2 , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , Kelch-Like ECH-Associated Protein 1/genetics , Phosphatidylinositol 3-Kinases/metabolism , Oxidative Stress , Polysaccharides/pharmacology , Structure-Activity Relationship
13.
Adv Healthc Mater ; : e2304400, 2024 Mar 29.
Article En | MEDLINE | ID: mdl-38551206

The management of critical-sized bone defects presents a formidable clinical challenge, especially given the increasing incidence of bone diseases in the aging population. Consequently, there is an increased demand for minimally invasive bone repair materials that can effectively address this challenge, particularly in outpatient settings. In this study, the goal is to develop an injectable and biodegradable biomaterial that adheres to and fills bone-defect sites to support bone regeneration. The osteogenic and angiogenic activities of animal horn peptides are investigated by incorporating them into biologically active moieties, in combination with a novel thermosensitive hydrogel. The resulting thermosensitive hydrogel exhibited essential biological functionalities, allowing precise modulation of its physical and chemical properties. Notably, the hydrogel incorporating the horn peptide rapidly filled the bone defect site, promoting both angiogenesis and bone induction. Consequently, this approach significantly accelerates new bone regeneration. In summary, the findings of this study present a promising, minimally invasive solution for addressing critical-sized bone defects.

14.
Am J Chin Med ; 52(2): 513-539, 2024.
Article En | MEDLINE | ID: mdl-38533568

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Astragalus propinquus , Interleukin-22 , Aged , Humans , Mice , Male , Female , Animals , Infant , Child, Preschool , Astragalus propinquus/chemistry , Intestines , Signal Transduction , Intestine, Small , Stem Cells , Polysaccharides/pharmacology , Aging , Regeneration
15.
Zhongguo Zhong Yao Za Zhi ; 49(2): 344-353, 2024 Jan.
Article Zh | MEDLINE | ID: mdl-38403310

In the context of the "antibiotic ban" era, the feed conversion of medicinal and edible traditional Chinese medicine(TCM) resources is a research hotspot in the field of antibiotic alternatives development. How to develop feed products that are beneficial to agriculture and livestock while ensuring nutrient balance and precision using medicinal and edible TCM resources as raw materials has become a challenge. Artificial intelligence(AI) technology has unique advantages in feed production and improving the efficiency of intelligent breeding. If AI technology is applied to the feed development of medicinal and edible TCM resources, it is possible to realize feeding and antibiotic-replacement value while ensuring precise nutrition. In order to better apply AI technology in the field of feed development of medicinal and edible TCM resources, this article used CiteSpace software to carry out literature visualization analysis and found that AI technology had a good application in the field of feed formulation optimization in recent years. However, there is still a gap in the research on the intelligent utilization of medicinal and edible TCM resources. Nonetheless, it is feasible for AI technology to be applied to the feed conversion of medicinal and edible TCM resources. Therefore, this article proposed for the first time an intelligent formulation system framework for feed materials derived from medicinal and edible TCM resources to provide new ideas for research in the field of feed development of medicinal and edible TCM resources and the research on the development of antibiotic alternatives. At the same time, it can pave the way for a new green industry chain for contemporary animal husbandry and the TCM industry.


Drugs, Chinese Herbal , Medicine, Chinese Traditional , Animals , Artificial Intelligence , Animal Husbandry , Technology
16.
Antioxidants (Basel) ; 13(2)2024 Feb 05.
Article En | MEDLINE | ID: mdl-38397801

Antioxidant peptides are currently a hotspot in food science, pharmaceuticals, and cosmetics. In different fields, the screening, activity evaluation, mechanisms, and applications of antioxidant peptides are the pivotal areas of research. Among these topics, the efficient screening of antioxidant peptides stands at the forefront of cutting-edge research. To this end, efficient screening with novel technologies has significantly accelerated the research process, gradually replacing the traditional approach. After the novel antioxidant peptides are screened and identified, a time-consuming activity evaluation is another indispensable procedure, especially in in vivo models. Cellular and rodent models have been widely used for activity evaluation, whilst non-rodent models provide an efficient solution, even with the potential for high-throughput screening. Meanwhile, further research of molecular mechanisms can elucidate the essence underlying the activity, which is related to several signaling pathways, including Keap1-Nrf2/ARE, mitochondria-dependent apoptosis, TGF-ß/SMAD, AMPK/SIRT1/PGC-1α, PI3K/Akt/mTOR, and NF-κB. Last but not least, antioxidant peptides have broad applications in food manufacture, therapy, and the cosmetics industry, which requires a systematic review. This review introduces novel technologies for the efficient screening of antioxidant peptides, categorized with a new vision. A wide range of activity evaluation assays, encompassing cellular models, as well as rodent and non-rodent models, are provided in a comprehensive manner. In addition, recent advances in molecular mechanisms are analyzed with specific cases. Finally, the applications of antioxidant peptides in food production, therapy, and cosmetics are systematically reviewed.

17.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Article En | MEDLINE | ID: mdl-38336183

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Lycium , Retinal Degeneration , Mice , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/drug therapy , Lycium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Oxidative Stress , Disease Models, Animal
18.
J Ethnopharmacol ; 325: 117869, 2024 May 10.
Article En | MEDLINE | ID: mdl-38342153

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY: The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS: The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS: The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1ß, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1ß, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION: Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1ß, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.


Coronary Disease , Drugs, Chinese Herbal , Humans , Animals , Rats , Apigenin , Luteolin/pharmacology , Luteolin/therapeutic use , Hydrogen Peroxide , Interleukin-6 , Linoleic Acid , Molecular Docking Simulation , Network Pharmacology , Quercetin , Reactive Oxygen Species , Tumor Necrosis Factor-alpha , Coronary Disease/drug therapy , Interleukin-1beta , Phenylalanine
19.
J Therm Biol ; 119: 103752, 2024 Jan.
Article En | MEDLINE | ID: mdl-38194751

Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.


Antioxidants , Heat Stress Disorders , Rabbits , Animals , Antioxidants/metabolism , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1 , Oxidative Stress , Heat-Shock Response , Inflammation , Heat Stress Disorders/veterinary
20.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Article En | MEDLINE | ID: mdl-38280710

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Drugs, Chinese Herbal , Lycium , Neoplasms , Mice , Animals , Tumor-Associated Macrophages , Molecular Weight , Drugs, Chinese Herbal/pharmacology , Macrophages , Tumor Microenvironment , Neoplasms/pathology
...