Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39330386

RESUMEN

Light is a key environmental factor affecting conidiation in filamentous fungi. The cryptochrome/photolyase CryA, a blue-light receptor, is involved in fungal development. In the present study, a homologous CryA (AoCryA) was identified from the widely occurring nematode-trapping (NT) fungus Arthrobotrys oligospora, and its roles in the mycelial growth and development of A. oligospora were characterized using gene knockout, phenotypic comparison, staining technique, and metabolome analysis. The inactivation of AocryA caused a substantial decrease in spore yields in dark conditions but did not affect spore yields in the wild-type (WT) and ∆AocryA mutant strains in light conditions. Corresponding to the decrease in spore production, the transcription of sporulation-related genes was also significantly downregulated in dark conditions. Contrarily, the ∆AocryA mutants showed a substantial increase in trap formation in dark conditions, while the trap production and nematode-trapping abilities of the WT and mutant strains significantly decreased in light conditions. In addition, lipid droplet accumulation increased in the ∆AocryA mutant in dark conditions, and the mutants showed an increased tolerance to sorbitol, while light contributed to the synthesis of carotenoids. Finally, AoCryA was found to affect secondary metabolic processes. These results reveal, for the first time, the function of a homologous cryptochrome in NT fungi.

2.
Microorganisms ; 12(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39338527

RESUMEN

Arthrobotrys oligospora is a representative nematode-trapping (NT) fungus that is able to capture, kill, and digest nematodes by producing specialized three-dimensional networks (traps) under nutrient-deprived conditions. Ran1 is a serine/threonine protein kinase that can act as a negative regulator of sexual conjugation and meiosis. However, the specific role of Ran1 remains largely unknown in NT fungi. Here, we identified AoRan1 (AOL_s00004g277) via gene disruption, phenotypic analysis, and metabolomic analysis. Our findings reveal that Aoran1 knockout caused a remarkable increase in conidial production, traps, and nematode feeding efficiency. In addition, the absence of Aoran1 resulted in the accumulation of lipid droplets and increased autophagic levels as well as increased tolerance to cell wall synthesis-disturbing reagents and oxidants. Metabolomic analyses also suggested that AoRan1 is involved in multiple metabolic processes, such as fatty acid biosynthesis. In summary, our results suggest that AoRan1 is crucial in conidiation, pathogenicity, and secondary metabolism. This study's results further our understanding of the molecular mechanisms by which AoRan1 regulates conidiation and trap formation in A. oligospora.

3.
Microorganisms ; 12(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39203374

RESUMEN

Arthrobotrys oligospora is a typical nematode-trapping (NT) fungus, which can secrete food cues to lure, capture, and digest nematodes by triggering the production of adhesive networks (traps). Based on genomic and proteomic analyses, multiple pathogenic genes and proteins involved in trap formation have been characterized; however, there are numerous uncharacterized genes that play important roles in trap formation. The functional studies of these unknown genes are helpful in systematically elucidating the complex interactions between A. oligospora and nematode hosts. In this study, we screened the gene AOL_s00004g24 (Ao4g24). This gene is similar to the SWI/SNF chromatin remodeling complex, which was found to play a potential role in trap formation in our previous transcriptome analysis. Here, we characterized the function of Ao4g24 by gene disruption, phenotypic analysis, and metabolomics. The deletion of Ao4g24 led to a remarkable decrease in conidia yield, trap formation, and secondary metabolites. Meanwhile, the absence of Ao4g24 influenced the mitochondrial membrane potential, ATP content, autophagy, ROS level, and stress response. These results indicate that Ao4g24 has crucial functions in sporulation, trap formation, and pathogenicity in NT fungi. Our study provides a reference for understanding the role of unidentified genes in mycelium growth and trap formation in NT fungi.

4.
Microorganisms ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543666

RESUMEN

Arthrobotrys oligospora, a widespread nematode-trapping fungus which can produce conidia for asexual reproduction and form trapping devices (traps) to catch nematodes. However, little is known about the sporulation mechanism of A. oligospora. This research characterized the functions and regulatory roles of the upstream spore-producing regulatory genes, AosfgA and AofluG, in A. oligospora. Our analysis showed that AosfgA and AofluG interacted with each other. Meanwhile, the AofluG gene was downregulated in the ΔAosfgA mutant strain, indicating that AosfgA positively regulates AofluG. Loss of the AosfgA and AofluG genes led to shorter hyphae and more septa, and the ΔAosfgA strain responded to heat and chemical stresses. Surprisingly, the number of nuclei was increased in the mycelia but reduced in the conidia of the ΔAosfgA and ΔAofluG mutants. In addition, after nematode induction, the number and volume of vacuoles were remarkably increased in the ΔAosfgA and ΔAofluG mutant strains. The abundance of metabolites was markedly decreased in the ΔAosfgA and ΔAofluG mutant strains. Collectively, the AosfgA and AofluG genes play critical roles in mycelial development, and they are also involved in vacuole assembly, the stress response, and secondary metabolism. Our study provides distinct insights into the regulatory mechanism of sporulation in nematode-trapping fungi.

5.
J Fungi (Basel) ; 10(2)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38392782

RESUMEN

Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive oxygen species (ROS), and it has an important role in improving the resistance and scavenging capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant strain was significantly downregulated compared with the WT strain. These results indicate that AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary metabolism.

6.
J Adv Res ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38331317

RESUMEN

INTRODUCTION: Arthrobotrys oligospora has been utilized as a model strain to study the interaction between fungi and nematodes owing to its ability to capture nematodes by developing specialized traps. A previous study showed that high-osmolarity glycerol (Hog1) signaling regulates the osmoregulation and nematocidal activity of A. oligospora. However, the function of downstream transcription factors of the Hog1 signaling in the nematode-trapping (NT) fungi remains unclear. OBJECTIVE: This study aimed to investigate the functions and potential regulatory network of AoMsn2, a downstream transcription factor of the Hog1 signaling pathway in A. oligospora. METHODS: The function of AoMsn2 was characterized using targeted gene deletion, phenotypic experiments, real-time quantitative PCR, RNA sequencing, untargeted metabolomics, and yeast two-hybrid analysis. RESULTS: Loss of Aomsn2 significantly enlarged and swollen the hyphae, with an increase in septa and a significant decrease in nuclei. In particular, spore yield, spore germination rate, traps, and nematode predation efficiency were remarkably decreased in the mutants. Phenotypic and transcriptomic analyses revealed that AoMsn2 is essential for fatty acid metabolism and autophagic pathways. Additionally, untargeted metabolomic analysis identified an important function of AoMsn2 in the modulation of secondary metabolites. Furtherly, we analyzed the protein interaction network of AoMsn2 based on the Kyoto Encyclopedia of Genes and Genomes pathway map and the online website STRING. Finally, Hog1 and six putative targeted proteins of AoMsn2 were identified by Y2H analysis. CONCLUSION: Our study reveals that AoMsn2 plays crucial roles in the growth, conidiation, trap development, fatty acid metabolism, and secondary metabolism, as well as establishes a broad basis for understanding the regulatory mechanisms of trap morphogenesis and environmental adaptation in NT fungi.

7.
Front Microbiol ; 14: 1235283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779704

RESUMEN

The p21-GTPase-activated protein kinases (PAKs) participate in signal transduction downstream of Rho GTPases, which are regulated by Rho GTPase-activating proteins (Rho-GAP). Herein, we characterized two orthologous Rho-GAPs (AoRga1 and AoRga2) and two PAKs (AoPak1 and AoPak2) through bioinformatics analysis and reverse genetics in Arthrobotrys oligospora, a typical nematode-trapping (NT) fungus. The transcription analyses performed at different development stages suggested that Aopaks and Aorga1 play a crucial role during sporulation and trap formation, respectively. In addition, we successfully deleted Aopak1 and Aorga1 via the homologous recombination method. The disruption of Aopak1 and Aorga1 caused a remarkable reduction in spore yield and the number of nuclei per cell, but did not affect mycelial growth. In ∆Aopak1 mutants, the trap number was decreased at 48 h after the introduction of nematodes, but nematode predatory efficiency was not affected because the extracellular proteolytic activity was increased. On the contrary, the number of traps in ∆Aorga1 mutants was significantly increased at 36 h and 48 h. In addition, Aopak1 and Aorga1 had different effects on the sensitivity to cell-wall-disturbing reagent and oxidant. A yeast two-hybrid assay revealed that AoPak1 and AoRga1 both interacted with AoRac, and AoPak1 also interacted with AoCdc42. Furthermore, the Aopaks were up-regulated in ∆Aorga1 mutants, and Aorga1 was down-regulated in ∆Aopak1 mutants. These results reveal that AoRga1 indirectly regulated AoPAKs by regulating small GTPases.

8.
Arch Virol ; 160(12): 3001-10, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26350773

RESUMEN

p17 is a nonstructural protein of avian reovirus (ARV) that induces autophagy in infected cells. In the present study, we investigated the effect of p17 and its nuclear localization signal (NLS) on autophagy and viral replication. When Vero cells and DF1 cells were transfected with mutant p17 in which lysine (K) at position 122 and arginine (R) at position 123 were mutated to alanine (A), the expression level of LC3 II decreased dramatically after transfection. The expression of the polypeptide encompassing the first 103 amino acids of p17, a region that did not contain the NLS, did not have a significant effect on autophagy. Moreover, when cells overexpressing mutant p17 were infected with the ARV GX2010/1 strain, the viral titer was significantly decreased compared with the expression of wild-type p17. In general, the NLS of p17 facilitates the induction of autophagy and is correlated with an increase in virus production.


Asunto(s)
Autofagia , Núcleo Celular/virología , Orthoreovirus Aviar/fisiología , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/veterinaria , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Pollos , Chlorocebus aethiops , Señales de Localización Nuclear , Orthoreovirus Aviar/genética , Enfermedades de las Aves de Corral/fisiopatología , Infecciones por Reoviridae/fisiopatología , Infecciones por Reoviridae/virología , Células Vero , Proteínas no Estructurales Virales/genética
9.
Arch Virol ; 160(7): 1679-85, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25925704

RESUMEN

Avian reovirus (ARV)-induced apoptosis contributes to the pathogenesis of reovirus in infected chickens. However, methods for effectively reducing ARV-triggered apoptosis remain to be explored. Here, we show that pretreatment with chloroquine (CQ) or E64d plus pepstatin A decreases ARV-mediated apoptosis in chicken DF-1 cells. By acting as autophagy inhibitors, CQ and E64d plus pepstatin A increase microtubule-associated protein 1 light chain 3-II (LC3II) accumulation in ARV-infected cells, which results in decreased ARV protein synthesis and virus yield and thereby contributes to the reduction of apoptosis. Furthermore, ARV-mediated apoptosis in the bursa, heart and intestines of chicken embryos is attenuated by CQ and E64d plus pepstatin A treatment. Importantly, treatment with these autophagy inhibitors increases the survival of infected chicken embryos. Together, our data suggest that pharmacological inhibition of autophagy might represent a novel strategy for reducing ARV-mediated apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cloroquina/administración & dosificación , Leucina/análogos & derivados , Orthoreovirus Aviar/fisiología , Pepstatinas/administración & dosificación , Enfermedades de las Aves de Corral/fisiopatología , Infecciones por Reoviridae/veterinaria , Animales , Embrión de Pollo , Pollos , Leucina/administración & dosificación , Orthoreovirus Aviar/efectos de los fármacos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/embriología , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/tratamiento farmacológico , Infecciones por Reoviridae/fisiopatología , Infecciones por Reoviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA