Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 74
1.
Environ Res ; 258: 119402, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38866314

Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 µg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and the elevated ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1ß, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.

2.
Biochem Biophys Res Commun ; 722: 150167, 2024 Aug 30.
Article En | MEDLINE | ID: mdl-38797154

Iron-sulfur (Fe-S) clusters are ubiquitous and are necessary to sustain basic life processes. The intracellular Fe-S clusters do not form spontaneously and many proteins are required for their biosynthesis and delivery. The bacterial P-loop NTPase family protein ApbC participates in Fe-S cluster assembly and transfers the cluster into apoproteins, with the Walker A motif and CxxC motif being essential for functionality of ApbC in Fe-S protein biogenesis. However, the structural basis underlying the ApbC activity and the motifs' role remains unclear. Here, we report the crystal structure of Escherichia coli ApbC at 2.8 Å resolution. The dimeric structure is in a W shape and the active site is located in the 2-fold center. The function of the motifs can be annotated by structural analyses. ApbC has an additional N-terminal domain that differs from other P-loop NTPases, possibly conferring its inherent specificity in vivo.


Escherichia coli Proteins , Escherichia coli , Iron-Sulfur Proteins , Models, Molecular , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli/metabolism , Escherichia coli/genetics , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Iron-Sulfur Proteins/genetics , Crystallography, X-Ray , Amino Acid Sequence , Protein Conformation , Catalytic Domain , Protein Multimerization
3.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1249-1254, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621971

The chemical constituents of Draconis Sanguis were preliminarily studied by macroporous resin, silica gel, dextran gel, and high-performance liquid chromatography. One retro-dihydrochalcone, four flavonoids, and one stilbene were isolated. Their chemical structures were identified as 4-hydroxy-2,6-dimethoxy-3-methyldihydrochalcone(1), 4'-hydroxy-5,7-dimethoxy-8-methylflavan(2), 7-hydroxy-4',5-dimethoxyflavan(3),(2S)-7-hydroxy-5-methoxy-6-methylflavan(4),(2S)-7-hydroxy-5-methoxyflavan(5), and pterostilbene(6) by modern spectroscopy, physicochemical properties, and literature comparison. Compound 1 was a new compound. Compounds 2 and 6 were first found in the Arecaceae family. Compound 5 had the potential to prevent and treat diabetic kidney disease.


Arecaceae , Diabetes Mellitus , Diabetic Nephropathies , Drugs, Chinese Herbal , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Flavonoids/analysis , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods
4.
Biology (Basel) ; 13(4)2024 Apr 09.
Article En | MEDLINE | ID: mdl-38666864

This research sought to assess the effects of dietary supplements with Gracilaria lichenoides and Bacillus amyloliquefaciens, either individually or combined, on the growth performance, antioxidant capacity, and intestinal function of Penaeus monodon. A total of 840 shrimps were randomly assigned to 28 tanks with an average initial weight of (1.04 ± 0.03) g (30 shrimp per tank) with 7 different treatment groups and 4 replicates per treatment. The control treatment (C) consisted of a basal diet; in contrast, the experimental groups were complement with varying levels of G. lichenoides (3% or 8%), either alone (S3 and S8) or in combination with B.amyloliquefaciens at different concentrations (3% G. lichenoides and 109 CFU/g-S3B9; 8% G. lichenoides and 1011 CFU/g B. amyloliquefaciens-S8B11; 109 CFU/g B. amyloliquefaciens-S9; 1011 CFU/g B. amyloliquefaciens-B11). The results indicated that the maximum values of final body weight (FBW) (10.49 ± 0.90) g, weight gain rate (WGR) (908.94 ± 33.58) g, and specific growth rate (SGR) (4.20 ± 0.06) g were perceived in the 3% G. lichenoide diet treatment, and compared with the control group, the difference was significant (p < 0.05). The whole-body lipid content of shrimp in the B9 group was significantly higher than that in the B11 group (p < 0.05), but no significant difference was observed when compared with shrimp fed other diets (p > 0.05). The ash content of shrimp in the B9 group was found to be significantly higher than that in the S3B9 group (p < 0.05). Furthermore, the lipase activity in the stomach and intestines of the experimental groups exhibited a statistically significantly increase compared to the control (p < 0.05). In comparison to the control group, the hepatopancreas of the S3 group exhibited a significant increase in the activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and antioxidant genes [SOD, catalase (CAT), GSH-Px, thioredoxin (Trx), Hippo, and NF-E2-related factor 2 (Nrf2)] expression levels (p < 0.05). Additionally, the activities of total antioxidant capacity (T-AOC), SOD, peroxidase (POD), and antioxidant genes (CAT, GSH-Px, Trx, and Hippo) in the S3B9 treatment of hepatopancreas showed significant improvement (p < 0.05). The inclusion of dietary G. lichenoides and B. amyloliquefaciens resulted in enhanced relative expression of intestinal lipid metabolism genes (fatty acid synthetase (FAS), lipophorin receptor (LR), fatty acid transport protein 1 (FATP1)) and suppressed the expression of the long-chain fatty acid-CoA ligase 4 (LCL4) gene. Analysis of microbiota sequencing indicated improvements in composition and structure, with notable increases in Firmicutes at the phylum level and Vibrio at the genus level in the S3 group, as well as an increase in Tenericutes at the genus level in the S8B11 group. Overall, the inclusion of dietary G. lichenoides and B. amyloliquefaciens positively impacted the growth, antioxidant capacity, and microbial composition of shrimp, with particular enhancement observed in shrimp fed a supplementary 3% G. lichenoides diet.

5.
Biology (Basel) ; 13(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38666893

Ammonia is a major water quality factor influencing the survival and health of shrimp, among which the gill is the main effector organ for ammonia toxicity. In this study, we chose two types of Litopenaeus vannamei that were cultured in 30‱ seawater and domesticated in 3‱ low salinity, respectively, and then separately subjected to ammonia stress for 14 days under seawater and low-salinity conditions, of which the 3‱ low salinity-cultured shrimp were domesticated from the shrimp cultured in 30‱ seawater after 27 days of gradual salinity desalination. In detail, this study included four groups, namely the SC group (ammonia-N 0 mg/L, salinity 30‱), SAN group (ammonia-N 10 mg/L, salinity 30‱), LC group (ammonia-N 0 mg/L, salinity 3‱), and LAN group (ammonia-N 10 mg/L, salinity 3‱). The ammonia stress lasted for 14 days, and then the changes in the morphological structure and physiological function of the gills were explored. The results show that ammonia stress caused the severe contraction of gill filaments and the deformation or even rupture of gill vessels. Biochemical indicators of oxidative stress, including LPO and MDA contents, as well as T-AOC and GST activities, were increased in the SAN and LAN groups, while the activities of CAT and POD and the mRNA expression levels of antioxidant-related genes (nrf2, cat, gpx, hsp70, and trx) were decreased. In addition, the mRNA expression levels of the genes involved in ER stress (ire1 and xbp1), apoptosis (casp-3, casp-9, and jnk), detoxification (gst, ugt, and sult), glucose metabolism (pdh, hk, pk, and ldh), and the tricarboxylic acid cycle (mdh, cs, idh, and odh) were decreased in the SAN and LAN groups; the levels of electron-transport chain-related genes (ndh, cco, and coi), and the bip and sdh genes were decreased in the SAN group but increased in the LAN group; and the level of the ATPase gene was decreased but the cytc gene was increased in the SAN and LAN groups. The mRNA expression levels of osmotic regulation-related genes (nka-ß, ca, aqp and clc) were decreased in the SAN group, while the level of the ca gene was increased in the LAN group; the nka-α gene was decreased in both two groups. The results demonstrate that ammonia stress could influence the physiological homeostasis of the shrimp gills, possibly by damaging the tissue morphology, and affecting the redox, ER function, apoptosis, detoxification, energy metabolism, and osmoregulation.

6.
Article En | MEDLINE | ID: mdl-38508355

Microcystins (MCs) are prevalent harmful contaminants within shrimp aquaculture systems, exhibiting a diverse array of variants. Gut microbiota can engage in mutual interactions with the host through the gut-liver axis. In this study, the shrimp Litopenaeus vannamei were subjected to three different variants of MCs (LR, YR, RR) at a concentration of 1 µg/L each, and elucidated the alterations in both intestinal microbiota and hepatopancreas physiological homeostasis. The results showed that all three variants of MCs prompted histological alterations in the hepatopancreas, induced elevated levels of oxidative stress biomarkers (H2O2, T-SOD, and CAT), disturbed the transcription levels of immune-related genes (Crus, ALF, and Lys), along with an increase in apoptotic genes (Casp-3 and P53). Furthermore, the metabolic profiles of the hepatopancreas were perturbed, particularly in amino acid metabolism such as "lysine degradation" and "ß-alanine metabolism"; the mTOR and FoxO signaling were also influenced, encompassing alterations in the transcription levels of related genes. Additionally, the alterations were observed in the intestinal microbiota's diversity and composition, particularly potential beneficial bacteria (Alloprevotella, Bacteroides, Collinsella, Faecalibacterium, and Prevotellaceae UCG-001), which exhibited a positive correlation with the metabolite berberine. These findings reveal that the three MCs variants can impact the health of the shrimp by interfering with the homeostasis of intestinal microbial and hepatopancreas physiology.


Gastrointestinal Microbiome , Penaeidae , Animals , Hepatopancreas/metabolism , Microcystins/toxicity , Hydrogen Peroxide/metabolism , Oxidative Stress , Penaeidae/genetics
7.
Mar Pollut Bull ; 200: 116077, 2024 Mar.
Article En | MEDLINE | ID: mdl-38330811

Nitrite and microplastics (MPs) are environmental pollutants that threaten intestinal integrity and affect immune function of shrimp. In this study, the shrimp Litopenaeus vannamei were exposed to the individual and combined stress of nitrite and microplastics for 14 days, and the changes of intestinal histology and physiological functions were investigated. After single and combined stress, affectations occurred in intestinal tissue; the antioxidant enzyme activities (MDA, H2O2, CAT increased) and gene expression levels (CAT, SOD, GPx, HSP70 up-regulated) changed. The expression levels of detoxification genes (CYP450, UGT down-regulated, GST up-regulated), apoptosis genes (CASP-3 up-regulated) and endoplasmic reticulum stress genes (Bip, GRP94 down-regulated) changed. Furthermore, the stress also increased intestinal microbial diversity, causing bacterial composition variation, especially beneficial bacteria and pathogenic bacteria. These results suggested that nitrite and microplastics stress had adverse effects on the intestinal health of L. vannamei by affecting intestinal tissue morphology, immune response and microbial community.


Microbiota , Penaeidae , Animals , Nitrites , Microplastics , Plastics/pharmacology , Hydrogen Peroxide , Antioxidants/metabolism , Bacteria/metabolism , Digestion
8.
Aquat Toxicol ; 267: 106809, 2024 Feb.
Article En | MEDLINE | ID: mdl-38183775

Microcystins (MCs) are harmful substances to the health of cultured shrimp, and there are many variants of MCs. Intestinal is the immune and metabolic center of the shrimp, and is also the target organ for MCs toxicity. In this study, the shrimp Litopenaeus vannamei juvenile were separately exposed to 1 µg/L of three MCs variants (LR, YR, RR) for 72 h respectively, and the changes of intestinal morphology, physiological response and metabolic function were analyzed. The results showed the three MCs variants stress caused intestinal mucosal damage and disordered the homeostasis of antimicrobial genes (ALF and Lys) expression. The mRNA expression levels of antioxidant genes (Nrf2 and GPx) and apoptosis factors (CytC and Casp-3) were increased, but that of detoxification gene (CYP450) was decreased. Furthermore, the intestinal metabolic pattern was also influenced by stresses, among which MC-LR induced more differential metabolites than that of MC-YR and MC-RR. The function of purine metabolism was highly influenced by the stress of three MCs variants, followed by amino acid metabolism, but there were differences in the types of amino acids. The metabolites citric acid, L-glutamine, L-tryptophan, spermine, UMP, and indole contributed to the metabolic pathway network. Nineteen stress-related metabolites were identified as candidates for subsequent screening of potential biomarkers. These results revealed the toxic effects of three MCs variants on the intestinal physiological and metabolic homeostasis of the shrimp.


Microcystins , Water Pollutants, Chemical , Microcystins/toxicity , Microcystins/metabolism , Water Pollutants, Chemical/toxicity , Intestines , Intestinal Mucosa/metabolism , Antioxidants/metabolism
9.
Biology (Basel) ; 12(11)2023 Nov 15.
Article En | MEDLINE | ID: mdl-37998032

As the intensive development of aquaculture persists, the demand for fishmeal continues to grow; however, since fishery resources are limited, the price of fishmeal remains high. Therefore, there is an urgent need to develop new sources of protein. They are rich in proteins, fatty acids, amino acids, chitin, vitamins, minerals, and antibacterial substances. Maggot meal-based diet is an ideal source of high-quality animal protein and a new type of protein-based immune enhancer with good application prospects in animal husbandry and aquaculture. In the present study, we investigated the effects of three different diets containing maggot protein on the growth and intestinal microflora of Litopenaeus vannamei. The shrimp were fed either a control feed (no fly maggot protein added), FM feed (compound feed with 30% fresh fly maggot protein added), FF feed (fermented fly maggot protein), or HT feed (high-temperature pelleted fly maggot protein) for eight weeks. The results showed that fresh fly maggot protein in the feed was detrimental to shrimp growth, whereas fermented and high-temperature-pelleted fly maggot protein improved shrimp growth and survival. The effects of different fly maggot protein treatments on the intestinal microbiota of L. vannamei also varied. Fermented fly maggot protein feed and high-temperature-pelleted fly maggot protein feed increased the relative abundance of Ruegeria and Pseudomonas, which increased the abundance of beneficial bacteria and thus inhibited the growth of harmful bacteria. In contrast, fresh fly maggot proteins alter the intestinal microbiome, disrupting symbiotic relationships between bacteria, and causing invasion by Vibrio and antibiotic-resistant bacteria. These results suggest that fresh fly maggot proteins affect the composition of intestinal microorganisms, which is detrimental to the intestinal tract of L. vannamei, whereas fermented fly maggot protein feed affected the growth of L. vannamei positively by improving the composition of intestinal microorganisms.

10.
Mar Environ Res ; 192: 106245, 2023 Nov.
Article En | MEDLINE | ID: mdl-37926588

Triclocarban (TCC) is a widely used broad-spectrum antimicrobial agent that has become a pollutant threatening the health of aquatic animals. However, the toxic effects of TCC on Penaeus monodon are still lacking. In this study, we exposed P. monodon to 1 µg/L (TCC-1) and 10 µg/L TCC (TCC-10) for 14 days, and the changes of histological morphology, physiological and immune responses in the gills were investigated. The results showed that TCC exposure caused the deformation of the gill vessels and the disordered arrangement of the gill filaments. Oxidative stress biochemical indexes such as H2O2 content, CAT and GPx activity and the relative expression levels of antioxidant-related genes (SOD, GPx and Nrf2) were increased in the TCC-1 and TCC-10 groups; the levels of CAT and HSP70 genes were increased but POD activity was decreased in the TCC-10 group. The relative expression levels of endoplasmic reticulum (ER) stress indexes such as ERP15 and ATF-6 genes were increased in the TCC-10 group, while the level of GRP78 gene was decreased in the TCC-1 and TCC-10 groups. The relative expression levels of apoptosis indexes such as p53 and JNK genes were increased, but CytC and Casp-3 genes were decreased in the TCC-1 and TCC-10 groups. Furthermore, the relative expression levels of detoxification metabolism-related genes (cytP450 and GST) and osmotic regulation-related genes (NKA-α, NKA-ß, CA, AQP, CLC and CCP) were increased in the TCC-10 group. The results showed that TCC exposure could affect the physiological homeostasis in the gills of P. monodon, probably via damaging histological morphology, inducing oxidative stress, and disordering ER stress, apoptosis, detoxification and osmotic regulation.


Penaeidae , Animals , Penaeidae/genetics , Penaeidae/metabolism , Gills , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Immunity
11.
Fish Shellfish Immunol ; 139: 108879, 2023 Aug.
Article En | MEDLINE | ID: mdl-37271326

The orange-spotted grouper (Epinephelus coioides) is a high economic value aquacultural fish in China, however, it often suffers from the outbreak of parasitic ciliate Cryptocaryon irritans as well as bacterium Vibrio harveyi which bring great loss in grouper farming. In the present study, we established a high dose C. irritans local-infected model which caused the mortality of groupers which showed low vitality and histopathological analysis demonstrated inflammatory response and degeneration in infected skin, gill and liver. In addition, gene expression of inflammatory cytokines was detected to assist the estimate of inflammatory response. Furthermore, we also found that the activity of Na+/K+ ATPase in gill was decreased in groupers infected C. irritans and the concentration of Na+/Cl- in blood were varied. Base on the morbidity symptom occurring in noninfected organs, we hypothesized that the result of morbidity and mortality were due to secondary bacterial infection post parasitism of C. irritans. Moreover, four strains of bacteria were isolated from the infected site skin and liver of local-infected groupers which were identified as V. harveyi in accordance of phenotypic traits, biochemical characterization and molecular analysis of 16S rDNA genes, housekeeping genes (gyrB and cpn60) and species-specific gene Vhhp2. Regression tests of injecting the isolated strain V. harveyi has showed high pathogenicity to groupers. In conclusion, these findings provide the evidence of coinfections with C. irritans and V. harveyi in orange-spotted grouper.


Bass , Ciliophora Infections , Ciliophora , Fish Diseases , Hymenostomatida , Vibrio Infections , Vibrio , Animals , Bass/metabolism , Vibrio/metabolism , Ciliophora/physiology , Vibrio Infections/microbiology , Ciliophora Infections/veterinary , Ciliophora Infections/parasitology , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/metabolism
12.
Aquat Toxicol ; 260: 106569, 2023 Jul.
Article En | MEDLINE | ID: mdl-37207485

Carbonate alkalinity (CA) is one of the environmental factors affecting the survival and growth of aquatic animals. However, the toxic effects of CA stress on Pacific white shrimp Litopenaeus vannamei at the molecular level are completely unclear. In this study, we investigated the changes of the survival and growth, and hepatopancreas histology of L. vannamei under different levels of CA stress, and integrated transcriptomics and metabolomics to explore major functional changes in the hepatopancreas and identify biomarkers. After CA exposure for 14 days, the survival and growth of the shrimp were reduced, and the hepatopancreas showed obvious histological damage. A total of 253 genes were differentially expressed in the three CA stress groups, and immune-related genes such as pattern recognition receptors, phenoloxidase system and detoxification metabolism were affected; substance transport-related regulators and transporters were mostly downregulated. Furthermore, the metabolic pattern of the shrimp was also altered by CA stress, especially amino acids, arachidonic acid and B-vitamin metabolites. The integration analysis of differential metabolites and genes further showed that the functions of ABC transporters, protein digestion and absorption, and amino acid biosynthesis and metabolism were highly altered by CA stress. The results of this study revealed that CA stress caused immune, substance transport, and amino acid metabolic variations in L. vannamei, and identified several potential biomarkers related to stress response.


Penaeidae , Water Pollutants, Chemical , Animals , Transcriptome , Hepatopancreas/metabolism , Water Pollutants, Chemical/toxicity , Metabolomics , Amino Acids/metabolism , Penaeidae/genetics , Penaeidae/metabolism
13.
Environ Technol ; : 1-10, 2023 May 23.
Article En | MEDLINE | ID: mdl-37183433

ABSTRACTImmobilized microorganisms technology has been explored as a promising wastewater treatment method. To further increase the activity of the immobilized microorganisms, a porous membrane which was composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) was designed for microorganism encapsulation. The plane membrane and the spherical membrane were prepared respectively. The morphology, mechanical properties, nitrate permeability, and biodegradability of the plane membranes were investigated to determine an optimized formulation. And then, denitrifying bacteria was encapsulated by the spherical membrane and its denitrification performance in synthetic wastewater was explored. The mean pore size of the PLA/PEG plane membranes ranged from 2.09 ± 0.63 µm to 3.15 ± 1.32 µm. PEG stimulated interconnected pore structure of the PLA/PEG plane membrane. Compare with neat PLA membrane, the tensile strength of the PLA/50%PEG plane membrane decreased by about 53.2% and elongation at break increased by about 103.5%. Nitrate permeability attained a maximum of 188.95 ± 4.59 mg·L-1·m-2·h-1 for PLA/50%PEG plane membrane. The denitrifying active sludge enclosed with the spherical membrane showed good denitrification performance in a short start-up time. The nitrate removal rate reached 51.14% on the 4th day and 82.53% on the 17th day. This porous PLA/50%PEG membrane was good for the diffusion of substrates and nutrients, which enabled the encapsulated microorganism recovered activity in a short time. The spraying method made the microorganism encapsulation could be designed according to the different microorganisms and different user environments, which expanded the application scope of microorganism encapsulation technology.

14.
Mar Pollut Bull ; 187: 114600, 2023 Feb.
Article En | MEDLINE | ID: mdl-36652857

Titanium dioxide nanoparticles (nano-TiO2) are a common environmental pollutant threatening aquatic animals. The natural habitats and cultured environments of groupers make them vulnerable to nanoparticle pollution. In this study, hybrid grouper juveniles were separately exposed to 1 or 10 mg/L nano-TiO2 for 14 days, and the toxicological response of these groupers were investigated. After nano-TiO2 exposure, the liver showed apparent histopathology and intestinal goblet cells were also affected. The transcription of antioxidant and apoptosis-related genes were down-regulated, and the inflammatory factor TNF-α was up-regulated in the liver. The metabolite patterns of the liver were disturbed, especially amino acid metabolism. The diversity and composition of the intestinal microbiota were also altered especially the genera Lactobacillus and Nautella. The changes of several intestinal bacteria were correlated with the immune factors and metabolites of respective hosts. We concluded that nano-TiO2 exposure negatively affects the physiological homeostasis of groupers.


Bass , Gastrointestinal Microbiome , Nanoparticles , Animals , Nanoparticles/toxicity , Titanium/toxicity , Liver
15.
Fish Shellfish Immunol ; 133: 108562, 2023 Feb.
Article En | MEDLINE | ID: mdl-36682479

Cryptocaryon irritans is a parasitic ciliate of marine fish, causing serious mortality and economic loss of grouper. In this study, the orange-spotted grouper (Epinephelus coioides) were separately exposed to C. irritans infection for 72 h at a dose of 5000 or 10000 active theronts per fish, and we evaluated the changes in histopathology, oxidative stress, immune response, and intestinal microbiota composition. The results showed that C. irritans infection caused pathological alteration on the skin, gills, and liver of E. coioides. Oxidative stress responses occurred in the liver and gills, reflected in the corresponding antioxidant enzyme and gene indexes. The mRNA expression levels of inflammation-related genes (IL-1ß, IL-6, and IL-8) and the mediators of apoptosis (casp3, casp9, and cytc) were increased in the liver and gills of the fish. C. irritans infection also affected the diversity and composition of intestinal microbiota. Specifically, the relative abundance of Firmicutes was increased, whereas that of Proteobacteria was decreased. Several potentially beneficial bacteria (Pandoraea, Clostridium sensu stricto 1, Christensenellaceae R-7 group, and Weissella) were decreased, whereas pathogenic bacteria (Streptococcus and Acinetobacter) were increased. In conclusion, this study reveals that C. irritans infection caused histopathology, immune disorders, and intestinal microbial community variation in E. coioides.


Bass , Ciliophora Infections , Ciliophora , Fish Diseases , Gastrointestinal Microbiome , Hymenostomatida , Animals , Phylogeny , Ciliophora/physiology , Immunity , Oxidative Stress , Fish Proteins
16.
Environ Pollut ; 318: 120950, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36574809

Nodularin (NOD) is a harmful cyanotoxin that affects shrimp farming. The hepatopancreas and intestine of shrimp are the main target organs of cyanotoxins. In this study, we exposed Litopenaeus vannamei to NOD at 0.1 and 1 µg/L for 72 h, respectively, and changes in histology, oxidative stress, gene transcription, metabolism, and intestinal microbiota were investigated. After NOD exposure, the hepatopancreas and intestine showed obvious histopathological damage and elevated oxidative stress response. Transcription patterns of immune genes related to detoxification, prophenoloxidase and coagulation system were altered in the hepatopancreas. Furthermore, metabolic patterns, especially amino acid metabolism and arachidonic acid related metabolites, were also disturbed. The integration of differential genes and metabolites revealed that the functions of "alanine, aspartic acid and glutamate metabolism" and "aminoacyl-tRNA biosynthesis" were highly affected. Alternatively, NOD exposure induced the variation of the diversity and composition of intestinal microbiota, especially the abundance of potentially beneficial bacteria (Demequina, Phyllobacterium and Pseudoalteromonas) and pathogenic bacteria (Photobacterium and Vibrio). Several intestinal bacteria were correlated with the changes of host the metabolic function and immune factors. These results revealed the toxic effects of NOD on shrimp, and identified some biomarkers.


Gastrointestinal Microbiome , Penaeidae , Animals , Intestines , Peptides, Cyclic , Cyanobacteria Toxins , Immunity, Innate
17.
Front Microbiol ; 13: 994188, 2022.
Article En | MEDLINE | ID: mdl-36212851

Microcystin-LR (MC-LR) is a hazardous substance that threaten the health of aquatic animals. Intestinal microbes and their metabolites can interact with hosts to influence physiological homeostasis. In this study, the shrimp Litopenaeus vannamei were exposed to 1.0 µg/l MC-LR for 72 h, and the toxic effects of MC-LR on the intestinal microbial metagenomic and metabolomic responses of the shrimp were investigated. The results showed that MC-LR stress altered the gene functions of intestinal microbial, including ABC transporter, sulfur metabolism and riboflavin (VB2) metabolism, and induced a significant increase of eight carbohydrate metabolism enzymes. Alternatively, intestinal metabolic phenotypes were also altered, especially ABC transporters, protein digestion and absorption, and the biosynthesis and metabolism of amino acid. Furthermore, based on the integration of intestinal microbial metagenomic and metabolome, four bacteria species (Demequina globuliformis, Demequina sp. NBRC 110055, Sphingomonas taxi and Sphingomonas sp. RIT328) and three metabolites (yangonin, α-hederin and soyasaponin ii) biomarkers were identified. Overall, our study provides new insights into the effects of MC-LR on the intestinal microbial functions of L. vannamei.

18.
Fish Physiol Biochem ; 48(5): 1349-1363, 2022 Oct.
Article En | MEDLINE | ID: mdl-36114399

Magnolia denudata is a well-known ornamental tree in China due to its beautiful blossoms, and it has been used as an analgesic to treat human headaches. This study investigated the anesthetic potential and physiological response of the essential oil of M. denudata flowers on spotted seabass Lateolabrax maculatus. Fish (mean ± SD, 164.16 ± 15.40 g) were individually exposed to different concentrations of M. denudata essential oil (MDO, 10, 20, 40, 60, 80, 100, and 120 mg/L) and eugenol (10, 20, 30, 40, 50, 60, and 70 mg/L) to investigate anesthetic efficacy. Based on the ideal time criterion for anesthetic induction (< 3 min) and recovery (< 10 min), the lowest effective concentration for spotted seabass was 100 mg/L for MDO and 60 mg/L for eugenol. The physiological and histopathological damage in the gill of L. maculatus after using MDO and eugenol was also evaluated at the minimum dose inducing deep anesthesia, and at 0, 6, and 24 h after recovery. The results showed that MDO and eugenol anesthesia alleviated the levels of cortisol and glucose and the lactic dehydrogenase activity induced by handling. Compared with eugenol, MDO also caused secondary stress to the body, but MDO caused minor physiological responses and histological changes in the gills. This study suggests that MDO is an effective anesthetic for spotted seabass.


Anesthetics , Bass , Magnolia , Oils, Volatile , Animals , Anesthetics/pharmacology , Bass/physiology , Eugenol/pharmacology , Gills , Glucose , Hydrocortisone , Oils, Volatile/pharmacology , Oxidoreductases
19.
Chemistry ; 28(70): e202202190, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36125783

C-N bond formation takes on a critical significance in reactions of organic synthesis, material production and pharmaceutical manufactory. Chan-Lam has proposed a useful methodology to furnish secondary arylamides under mild conditions. However, when chiral sulfinamides serve as the coupling precursors, the Cu-catalyzed coupling reaction is found with low efficacy. Complex side-products are generated under classic conditions. Moreover, it led to the racemization of the coupling product. In this study, an optimized Ni-catalyzed Chan-Lam type coupling conditions were proposed, which resulted in clean conversion from chiral sulfinamides and arylboronic acids to offer N-aryl sulfinamides efficiently and enantioretentively. The trans-N1 ,N2 -dimethylcyclohexane-1,2-diamine was proven as the most efficient ligand. Under the optimized conditions, a series of chiral N-aryl sulfinamides was prepared with high chemical yield without racemization. Furthermore, a plausible and novel mechanism was proposed. Interestingly, the method could efficiently furnish a wide variety of C-X bonds by coupling arylboronic acids with different nucleophiles.


Catalysis , Chemistry Techniques, Synthetic , Ligands
20.
Front Immunol ; 13: 891643, 2022.
Article En | MEDLINE | ID: mdl-35874721

Vaccination is an effective method to prevent Cryptocaryon irritans infection. Although some vaccines have been developed, large-scale production of these vaccines is costly. Development of a heterogenous vaccine generated by low-cost antigens is an alternative method. In the present study, grouper immunized with Tetrahymena thermophila, a free-living ciliate that easily grows in inexpensive culture media at high density, showed protective immunity against C. irritans infection. Higher immobilization against C. irritans theronts was detected in T. thermophila-immunized grouper serum, which suggested the existence of a cross-reactive antibody in the serum. By immunoprecipitation and mass spectrometry analyses, tubulin was identified as a potential cross-reactive antigen between C. irritans and T. thermophila. Recombinant T. thermophila tubulin protein (rTt-tubulin) and its antibody were prepared, and immunofluorescence showed that both C. irritans and T. thermophila cilia were stained by the anti-rTt-tubulin antibody. Grouper immunized with rTt-tubulin showed a reduced infective rate after the C. irritans challenge. An enhanced level of C. irritans-binding immunoglobulin M (IgM) antibody was detected in serum from rTt-tubulin-immunized grouper. Moreover, specific antibodies were also found in the mucus and tissue culture medium from rTt-tubulin-immunized grouper. Overall, these findings suggested that vaccination with T. thermophila elicits cross-reactive protective immunity in grouper against C. irritans, and T. thermophila may be a potential heterologous antigen for vaccine development.


Bass , Ciliophora Infections , Fish Diseases , Hymenostomatida , Tetrahymena thermophila , Animals , Ciliophora Infections/prevention & control , Ciliophora Infections/veterinary , Fish Diseases/prevention & control , Immunization , Immunoglobulin M , Tubulin , Vaccination
...