Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Water Res ; 253: 121302, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38401474

With the increasing discharge of wastewater effluent to natural waters, there is an urgent need to achieve both pathogenic microorganism inactivation and the mitigation of disinfection by-products (DBPs) during disinfection. Studies have shown that two-step chlorination, which injected chlorine disinfectant by splitting into two portions, was more effective in inactivating Escherichia coli than one-step chlorination under same total chlorine consumption and contact time. In this study, we observed a substantial reduction in the formation of five classes of CX3R-type DBPs, especially highly toxic haloacetonitriles (HANs), during two-step chlorination of secondary effluent when the mass ratio of chlorine-to-nitrogen exceeded 2. The shift of different chlorine species (free chlorine, monochloramine and organic chloramine) verified the decomposition of organic chloramines into monochloramine during second chlorination stage. Notably, the organic chloramines generated from the low molecular weight (< 1 kDa) fraction of dissolved organic nitrogen in effluent organic matter tended to decompose during the second step chlorination leading to the mitigation of HAN formation. Furthermore, the microbiological analysis showed that two-step chlorinated effluent had a slightly lower ecological impact on surface water compared to one-step chlorination. This work provided more information about the two-step chlorination for secondary effluent, especially in terms of organic chloramine transformation and HAN control.


Disinfectants , Water Pollutants, Chemical , Water Purification , Chloramines , Disinfection , Sewage , Halogenation , Chlorine/analysis , Molecular Weight , Water Pollutants, Chemical/analysis
2.
Water Res ; 185: 116099, 2020 Oct 15.
Article En | MEDLINE | ID: mdl-32739696

In addition to surface water and groundwater, rainwater is used as an important drinking water source in many parts of the world, especially in areas with serious water pollution or insufficient water resources. Conventional drinking water treatment technologies can remove dissolved organic matter and therefore reduce the formation of disinfection by-products (DBPs) during subsequent disinfection using surface water or groundwater as drinking water sources. However, little information has been known about the effect of conventional water treatment processes on DBP formation when rainwater is used as drinking water source. This study evaluated CX3R-type DBP precursors removal from rainwater by conventional drinking water treatments and the corresponding decrease of CX3R-type DBP (trihalomethanes (THMs), haloaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs)) formation and toxicity during the subsequent chlor(am)ination. The result showed that both sand filtration (SF) and activated carbon filtration (GAC) were able to remove DBP precursors and GAC outperformed SF, but no DBP precursors removal was observed during coagulation-sedimentation treatment. Among all treatments, SF + GAC was the most effective for DBP precursors removal, with removal efficiencies of 64.2% DOC, 98% DON and 76.6% UV254. Correspondingly, both SF and GAC decreased the formation of THMs, HALs, HANs and HAMs, and GAC performed better than SF. The combination of SF and GAC, especially SF + GAC, greatly decreased DBP formation, with average reduction of 79.2% and 85% during chlorination and chloramination respectively. After different treatments, the comprehensive toxicity risk of CX3R-type DBPs was all reduced, among which GAC + SF exhibited superior performance. Generally, the main contribution of integrated toxicity was HANs during chlor(am)ination. The formation potential of THMs, HALs, HANs and HAMs and the corresponding integrated toxicity were greater during chlorination than that during chloramination. Therefore, the combination of GAC and chloramination was promising in mitigating the comprehensive toxicity risk of THMs, HALs, HANs and HAMs for rainwater.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Chlorine , Disinfectants/analysis , Disinfection , Halogenation , Trihalomethanes , Water Pollutants, Chemical/analysis
3.
Water Res ; 184: 116148, 2020 Oct 01.
Article En | MEDLINE | ID: mdl-32698091

Disinfection by-products (DBPs) are associated with various adverse health effects. Diversiform advanced treatment processes have been applied for the control of DBPs, but DBPs can still be frequently detected in tap water. Tea-leaves can be made into popular beverage and is itself a porous bio-adsorbent. By simulating tea brewing process, this study evaluated the removal of DBPs from drinking water during the tea brewing process. Removal of four trihalomethanes (THMs) and four haloacetamides (HAMs) by different fermentation degree tea-leaves was investigated. Little DBPs were removed by unfermented and semi-fermented tea-leaves (i.e., Meitan turquoise bud and Dahongpao tea) with less than 5% removal of HAMs, whereas 40% HAMs can be removed by fermented tea (i.e., Jinjunmei tea and Shuixian tea). Tea soup is neutral and slightly acidic, so little DBP hydrolysis was observed under typical tea-leaf brewing process. DBPs were mainly removed by volatilization and adsorption during tea brewing. Removal difference caused by DBP volatilization is very small. The DBP removal difference of four kinds of tea-leaves may be caused by fermentation degree. The surface of unfermented Meitan turquoise bud had a smooth and regular morphology, whereas a rough, irregular, hollow and spongy surface of fermented tea (i.e., Jinjunmei and Shuixian tea) was observed. Generally, the higher the degree of tea fermentation, the more adsorption sites, and the more removal of DBPs. Finally, the model, which takes the DBP initial concentration, tea-leaf dose and brewing time into account, was established under the experimental conditions to predict the variation of DBP concentration during tea brewing, and suggestions for DBP removal were provided to reduce DBP exposure risk. The integrated toxic risk during tea brewing was also investigated, and about 30% integrated cytotoxicity and 26% genotoxicity was reduced during Jinjunmei and Shuixian tea-leaf brewing.


Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Disinfectants/analysis , Disinfection , Kinetics , Tea , Trihalomethanes , Water Pollutants, Chemical/analysis
...