RESUMEN
OBJECTIVES: Sleep regulates immune function reciprocally and can affect the parameters that are directly involved in the immune response. Sleep deprivation is considered to be a stress-causing factor and is associated with impaired immune activity. It causes increased glucocorticoid concentrations by activating the hypothalamic-pituitary-adrenal axis; this can lead to a series of disorders that are associated with the prolonged or increased secretion of these hormones. The aim of this study was to evaluate the effects of sleep restriction (SR) on the development of pulmonary experimental metastasis and the modulation of the tumor immune response. METHODS: The SR protocol was accomplished by depriving C57BL/6 male mice of sleep for 18 h/day for 2, 7, 14, and 21 days. The modified multiple-platforms method was used for SR. RESULTS: The results showed that cytotoxic cells (i.e., natural killer [NK] and CD8+ T cells) were reduced in number and regulatory T cells were predominant in the tumor microenvironment. Sleep-restricted mice also exhibited a reduced number of dendritic cells in their lymph nodes, which may have contributed to the ineffective activation of tumor-specific T cells. Peripheral CD4+ and CD8+ T cells were also reduced in the sleep-restricted mice, thus indicating an immunosuppressive status. CONCLUSIONS: Sleep dep-rivation induces failure in the activity of cells that are im-portant to the tumor immune response, both in the tumor microenvironment and on the periphery. This leads to the early onset and increased growth rate of lung metastasis.