Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biodegradation ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001976

RESUMEN

Acetaminophen [N-(4-hydroxyphenyl) acetamide, APAP] is an extensively and frequently consumed over-the-counter analgesic and antiphlogistic medication. It is being regarded as an emerging pollutant due to its continuous increment in the environment instigating inimical impacts on humans and the ecosystem. Considering its wide prevalence in the environment, there is an immense need of appropriate methods for the removal of APAP. The present study indulged screening and isolation of APAP degrading bacterial strains from pharmaceuticals-contaminated sites, followed by their molecular characterization via 16S rRNA sequencing. The phylogenetic analyses assigned the isolates to the genera Pseudomonas, Bacillus, Paracoccus, Agrobacterium, Brucella, Escherichia, and Enterobacter based on genetic relatedness. The efficacy of these strains in batch cultures tested through High-performance Liquid Chromatography (HPLC) revealed Paracoccus sp. and Enterobacter sp. as the most promising bacterial isolates degrading up to 88.96 and 85.92%, respectively of 300 mg L-1 of APAP within 8 days of incubation. Michaelis-Menten kinetics model parameters also elucidated the high degradation potential of these isolates. The major metabolites identified through FTIR and GC-MS analyses were 4-aminophenol, hydroquinone, and 3-hydroxy-2,4-hexadienedioic. Therefore, the outcomes of this comprehensive investigation will be of paramount significance in formulating strategies for the bioremediation of acetaminophen-contaminated sites through a natural augmentation process via native bacterial strains.

2.
Chemosphere ; 363: 142944, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067829

RESUMEN

Fipronil, a phenylpyrazole insecticide, is used to kill insects resistant to conventional insecticides. Though its regular and widespread use has substantially reduced agricultural losses, it has also caused its accumulation in various environmental niches. The biodegradation is an effective natural process that helps in reducing the amount of residual insecticides. This study deals with an in-depth investigation of fipronil degradation kinetics and pathways in Pseudomonas sp. FIP_A4 using multi-omics approaches. Soil-microcosm results revealed ∼87% degradation within 40 days. The whole genome of strain FIP_A4 comprises 4.09 Mbp with 64.6% GC content. Cytochrome P450 monooxygenase and enoyl-CoA hydratase-related protein, having 30% identity with dehalogenase detected in the genome, can mediate the initial degradation process. Proteome analysis revealed differential enzyme expression of dioxygenases, decarboxylase, and hydratase responsible for subsequent degradation. Metabolome analysis displayed fipronil metabolites in the presence of the bacterium, supporting the proposed degradation pathway. Molecular docking and dynamic simulation of each identified enzyme in complex with the specific metabolite disclosed adequate binding and high stability in the enzyme-metabolite complex. This study provides in-depth insight into genes and their encoded enzymes involved in the fipronil degradation and formation of different metabolites during pollutant degradation. The outcome of this study can contribute immensely to developing efficient technologies for the bioremediation of fipronil-contaminated soils.

3.
Bioresour Technol ; 401: 130732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677386

RESUMEN

Acetaminophen (APAP) is a frequently used, over-the-counter analgesic and antipyretic medication. Considering increase in global consumption, its ubiquity in environment with potential toxic impacts has become a cause of great concern. Hence, bioremediation of this emerging contaminant is of paramount significance. The present study incorporates a microcosm centric omics approach to gain in-depth insights into APAP degradation by Paracoccus sp. APAP_BH8. It can metabolize APAP (300 mg kg-1) within 16 days in soil microcosms. Genome analysis revealed potential genes capable of mediating degradation includes M20 aminoacylase family protein, guanidine deaminase, 4-hydroxybenzoate 3-monooxygenase, and 4-hydroxyphenylpyruvate dioxygenase. Whole proteome analysis showed differential expression of enzymes and bioinformatics provided evidence for stable binding of intermediates at the active site of considered enzymes. Metabolites identified were 4-aminophenol, hydroquinone, and 3-hydroxy-cis, cis-muconate. Therefore, Paracoccus sp. APAP_BH8 with versatile enzymatic and genetic attributes can be a promising candidate for formulating improved in situ APAP bioremediation strategies.


Asunto(s)
Acetaminofén , Biodegradación Ambiental , Genómica , Proteómica , Acetaminofén/metabolismo , Proteómica/métodos , Genómica/métodos , Paracoccus/metabolismo , Paracoccus/genética , Metabolómica , Proteoma/metabolismo
4.
FEMS Microbes ; 5: xtae004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38463555

RESUMEN

Antimicrobial resistance (AMR) contamination in the environment is one of the most significant worldwide threats of the 21st century. Since sludge is heavily exposed to diverse contaminants, including pharmaceuticals, the inhabitant bacterial population is expected to exhibit resistance to antimicrobial agents. In this study, sewage treatment plant (STP) sludge samples were analyzed to assess the antibiotic-resistant bacterial population, abundance of AMR genes (ermF, qnrS, Sul1, blaGES, blaCTX-M, and blaNDM), and mobile genetic elements (intl1 and IS26). Out of 16, six bacterial isolates exhibited resistance to 13 antibiotics with a high multiple antibiotic resistance index (MARI) (0.93) and high metal tolerance. Quantitative polymerase chain reaction showed the abundance of target genes ranging from 6.6 × 103 to 6.5 × 108 copies g-1 sludge. The overall outcome reveals that STP sludge comprised varied multidrug-resistant bacterial populations. It will give insights into the functions of heavy metals and biofilm development in the selection and spread of AMR genes and the associated bacteria. Therefore, the application of sludge needs proper screening for AMR and metal contamination prior to its countless applications. This study will contribute immensely to the risk analysis of STP effluents on environmental health, including control of AMR transmission.

5.
Sci Total Environ ; 914: 169911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185156

RESUMEN

Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.


Asunto(s)
Herbicidas , Microbiota , Oryza , Suelo/química , Herbicidas/análisis , Oryza/genética , ARN Ribosómico 16S/genética , Archaea/genética , Bacterias/genética , Acidobacteria/genética , Microbiología del Suelo
6.
Environ Sci Pollut Res Int ; 30(48): 106316-106329, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37726627

RESUMEN

Fipronil (C12H4Cl2F6N4OS) is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Aeromonas sp., and Pantoea sp. The bacterial degradation potential for fipronil was analyzed through high-performance liquid chromatography (HPLC). Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.9 and 83.6%, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas chromatography-mass spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.


Asunto(s)
Contaminantes del Suelo , Filogenia , Biodegradación Ambiental , ARN Ribosómico 16S/genética , Contaminantes del Suelo/análisis
7.
Environ Res ; 237(Pt 2): 117033, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660873

RESUMEN

Extensive use of chemicals like herbicides in rice and other fields to manage weeds is expected to have a lasting influence on the soil environment. Considering this rationale, we aimed to decipher the effects of herbicides, Pendimethalin and Pretilachlor, applied at 0.5 and 0.6 kg ha-1, respectively on the rhizosphere microbial community and soil characteristics in the tropical rice field, managed under zero tillage cultivation. The quantity of herbicide residues declined gradually since application up to 60 days thereafter it reached the non-detectable level. Most of the soil variables viz., microbial biomass, soil enzymes etc., exhibited slight reduction in the treated soils compared to the control. A gradual decline was observed in Mineral-N, MBC, MBN and enzyme activities. Quantitative polymerase chain reaction results showed maximal microbial abundance of bacteria, fungi and archaea at mid-flowering stage of rice crop. The 16 rRNA and ITS region targeted amplicons high throughput sequencing microbial metagenomic approach revealed total of 94, 1353, and 510 species for archaea, bacteria and fungi, respectively. The metabarcoding of core microbiota revealed that the archaea comprised of Nitrososphaera, Nitrosocosmicus, and Methanosarcina. In the bacterial core microbiome, Neobacillus, Nitrospira, Thaurea, and Microvigra were found as the predominant taxa. Fusarium, Clonostachys, Nigrospora, Mortierella, Chaetomium, etc., were found in core fungal microbiome. Overall, the study exhibited that the recommended dose of herbicides found to be detrimental to the microbial dynamics, though a negative relation between residues and soil variables was observed that might alter the microbial diversity. The outcomes offer a comprehensive understanding of how herbicides affect the microbial community in zero tillage rice soil, thus has a critical imputation for eco-friendly and sustainable rice agriculture. Further, the long-term studies will be helpful in elucidating the role of identified microbial groups in sustaining the soil fertility and crop productivity.

8.
Res Sq ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333229

RESUMEN

Fipronil (C12H4Cl2F6N4OS), is a commonly used insecticide effective against numerous insects and pests. Its immense application poses harmful effects on various non-target organisms as well. Therefore, searching the effective methods for the degradation of fipronil is imperative and logical. In this study, fipronil-degrading bacterial species are isolated and characterized from diverse environments using a culture-dependent method followed by 16S rRNA gene sequencing. Phylogenetic analysis showed the homology of organisms with Acinetobacter sp., Streptomyces sp., Pseudomonas sp., Agrobacterium sp., Rhodococcus sp., Kocuria sp., Priestia sp., Bacillus sp., Pantoea sp. The bacterial degradation potential for fipronil was analyzed through High-Performance Liquid Chromatography. Incubation-based degradation studies revealed that Pseudomonas sp. and Rhodococcus sp. were found to be the most potent isolates that degraded fipronil at 100 mg L-1 concentration, with removal efficiencies of 85.97 % and 83.64 %, respectively. Kinetic parameter studies, following the Michaelis-Menten model, also revealed the high degradation efficiency of these isolates. Gas Chromatography-Mass Spectrometry (GC-MS) analysis revealed fipronil sulfide, benzaldehyde, (phenyl methylene) hydrazone, isomenthone, etc., as major metabolites of fipronil degradation. Overall investigation suggests that native bacterial species isolated from the contaminated environments could be efficiently utilized for the biodegradation of fipronil. The outcome derived from this study has immense significance in formulating an approach for bioremediation of fipronil-contaminated surroundings.

9.
Plants (Basel) ; 12(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36903927

RESUMEN

The bacteria harboring phoD encodes alkaline phosphatase (ALP), a secretory enzyme that hydrolyzes organic phosphorous (P) to a usable form in the soil. The impact of farming practices and crop types on phoD bacterial abundance and diversity in tropical agroecosystems is largely unknown. In this research, the aim was to study the effect of farming practices (organic vs. conventional) and crop types on the phoD-harboring bacterial community. A high-throughput amplicon (phoD gene) sequencing method was employed for the assessment of bacterial diversity and qPCR for phoD gene abundance. Outcomes revealed that soils treated for organic farming have high observed OTUs, ALP activity, and phoD population than soils managed under conventional farming with the trend of maize > chickpea > mustard > soybean vegetated soils. The relative abundance of Rhizobiales exhibited dominance. Ensifer, Bradyrhizobium, Streptomyces, and Pseudomonas were observed as dominant genera in both farming practices. Overall, the study demonstrated that organic farming practice favors the ALP activity, phoD abundance, and OTU richness which varied across crop types with maize crops showing the highest OTUs followed by chickpea, mustard, and least in soybean cropping.

10.
Environ Pollut ; 324: 121402, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36889658

RESUMEN

Imidacloprid, a broad-spectrum insecticide, is widely used against aphids and other sucking insects. As a result, its toxic effect is becoming apparent in non-targeted organisms. In-situ bioremediation of residual insecticide from the environment utilizing efficient microbes would be helpful in reducing its load. In the present work, in-depth genomics, proteomics, bioinformatics, and metabolomics analyses were employed to reveal the potential of Sphingobacterium sp. InxBP1 for in-situ degradation of imidacloprid. The microcosm study revealed ∼79% degradation with first-order kinetics (k = 0.0726 day-1). Genes capable of mediating oxidative degradation of imidacloprid and subsequent decarboxylation of intermediates were identified in the bacterial genome. Proteome analysis demonstrated significant overexpression of the enzymes coded by these genes. Bioinformatic analysis revealed significant affinity and binding of the identified enzymes for their respective substrates (the degradation pathway intermediates). The nitronate monooxygenase (K7A41 01745), amidohydrolase (K7A41 03835 and K7A41 07535), FAD-dependent monooxygenase (K7A41 12,275), and ABC transporter enzymes (K7A41 05325, and K7A41 05605) were found to be effective in facilitating the transport and intracellular degradation of imidacloprid. The metabolomic study identified the pathway intermediates and validated the proposed mechanism and functional role of the identified enzymes in degradation. Thus, the present investigation provides an efficient imidacloprid degrading bacterial species as evidenced by its genetic attributes which can be utilized or further improved to develop technologies for in-situ remediation.


Asunto(s)
Insecticidas , Insecticidas/metabolismo , Neonicotinoides , Nitrocompuestos/metabolismo , Oxigenasas de Función Mixta
11.
Environ Pollut ; 327: 121517, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36990341

RESUMEN

Poultry farming is a major livelihood in South and Southeast Asian economies where it is undergoing rapid intensification to meet the growing human demand for dietary protein. Intensification of poultry production systems is commonly supported by increased antimicrobial drug use, risking greater selection and dissemination of antimicrobial resistance genes (ARGs). Transmission of ARGs through food chains is an emerging threat. Here, we investigated transmission of ARGs from chicken (broiler and layer) litter to soil and Sorghum bicolor (L.) Moench plants based on field and pot experiments. The results demonstrate ARGs transmission from poultry litter to plant systems under field as well as experimental pot conditions. The most common ARGs could be tracked for transmission from litter to soil to plants were identified as detected were cmx, ErmX, ErmF, lnuB, TEM-98 and TEM-99, while common microorganisms included Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, and Vibrio cholerae. Using next generation sequencing and digital PCR assays we detected ARGs transmitted from poultry litter in both the roots and stems of S. bicolor (L.) Moench plants. Poultry litter is frequently used as a fertiliser because of its high nitrogen content; our studies show that ARGs can transmit from litter to plants and illustrates the risks posed to the environment by antimicrobial treatment of poultry. This knowledge is useful for formulating intervention strategies that can reduce or prevent ARGs transmission from one value chain to another, improving understanding of impacts on human and environmental health. The research outcome will help in further understanding the transmission and risks posed by ARGs from poultry to environmental and human/animal health.


Asunto(s)
Antiinfecciosos , Aves de Corral , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/análisis , Suelo , Pollos , Farmacorresistencia Bacteriana/genética , Estiércol/análisis , Genes Bacterianos
12.
Environ Res ; 221: 115271, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36640933

RESUMEN

The residual imidacloprid, a widely used insecticide is causing serious environmental concerns. Knowledge of its biodegradation will help in assessing its residual mass in soil. In view of this, a soil microcosm-based study was performed to test the biodegradation potential of Agrobacterium sp. InxBP2. It achieved ∼88% degradation in 20 days and followed the pseudo-first-order kinetics (k = 0.0511 day-1 and t1/2=7 days). Whole genome sequencing of Agrobacterium sp. InxBP2 revealed a genome size of 5.44 Mbp with 5179 genes. Imidacloprid degrading genes at loci K7A42_07110 (ABC transporter substrate-binding protein), K7A42_07270 (amidohydrolase family protein), K7A42_07385 (ABC transporter ATP-binding protein), K7A42_16,845 (nitronate monooxygenase family protein), and K7A42_20,660 (FAD-dependent monooxygenase) having sequence and functional similarity with known counterparts were identified. Molecular docking of proteins encoded by identified genes with their respective degradation pathway intermediates exhibited significant binding energies (-6.56 to -4.14 kcal/mol). Molecular dynamic simulation discovered consistent interactions and binding depicting high stability of docked complexes. Proteome analysis revealed differential protein expression in imidacloprid treated versus untreated samples which corroborated with the in-silico findings. Further, the detection of metabolites proved the bacterial degradation of imidacloprid. Thus, results provided a mechanistic link between imidacloprid and associated degradative genes/enzymes of Agrobacterium sp. InxBP2. These findings will be of immense significance in carrying out the lifecycle analysis and formulating strategies for the bioremediation of soils contaminated with insecticides like imidacloprid.


Asunto(s)
Insecticidas , Contaminantes del Suelo , Biodegradación Ambiental , Simulación del Acoplamiento Molecular , Multiómica , Neonicotinoides/análisis , Insecticidas/análisis , Nitrocompuestos/análisis , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Bacterias/metabolismo , Contaminantes del Suelo/análisis , Suelo
13.
J Biomol Struct Dyn ; 41(9): 3821-3834, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35380094

RESUMEN

The whole genome sequencing of a novel isoprene degrading strain of Sphingobium sp. BHU LFT2, its in silico analysis for identifying and characterizing enzymes, especially isoprene monooxygenases (IsoMO), which initiate the degradation process, and in vitro validation with cell extract of optimal temperature and pH and analysis for utilizing isoprene as the preferential substrate, were conducted. The most efficient monooxygenase was identified through comparative analyses using molecular docking followed by molecular dynamics simulation approach. The in silico results revealed high thermostability for most of the monooxygenases. Most potent monooxygenase with locus ID JQK15_20300 exhibiting high sequence similarity with known monooxygenases of isoprene-degrading Rhodococcus sp. LB1 and SC4 strains was identified. Interaction energy of -17.25 kJ/mol for JQK15_20300 with isoprene, was almost similar as that analysed for above-mentioned similar known counterparts, was exhibited by the molecular docking. Molecular dynamic simulation of 100 ns and free energy analysis of JQK15_20300 in the complex with isoprene gave persistent interaction of isoprene with JQK15_20300 during the simulation with high average binding energy of -47.13 kJ/mol thus proving higher affinity of JQK15_20300 for isoprene. The study revealed that the highly efficient isoprene degrading strain of Sphingobium sp. BHU LFT2 having effective monooxygenase could be utilized for large-scale applications including detoxification of air contaminated with isoprene in closed working systems.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Butadienos , Oxigenasas de Función Mixta , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Bases , Butadienos/metabolismo
14.
Environ Sci Pollut Res Int ; 28(21): 26990-27005, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33501578

RESUMEN

River Ganga is one of the largest and most sacred rivers of India. This river is largely affected by anthropogenic activities causing significant increase in water pollution. The impact of drains discharging polluted water on the bacterial community dynamics in the river remains unexplored. To elucidate this, the targeted 16S rRNA V3-V4 variable region amplicon sequencing and bioinformatic analysis were performed using water from upstream, drain, and downstream of river Ganga. Analysis revealed significant difference in relative abundances of bacterial communities. The increase in bacterial abundance and alpha diversity was detected in the downstream compared to the upstream. Environmental factors were found significantly different between upstream and downstream water. At the phyla level, highly abundant taxa such as Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes, and Verrucomicrobia were observed. Bacterial genera like Prevotella, Bacteroides, Blautia, and Faecalibacterium (fecal indicator) had higher abundance in the downstream site. Network co-occurrence revealed that bacterial communities have a modular profile with reduced interaction in drain and downstream water. The network of co-occurring bacterial communities consists of 283 nodes with edge connectivity of 6900, 7074, and 5294 in upstream, drain, and downstream samples, respectively. Upstream communities exhibited the highest positive interaction followed by the drain and the downstream sites. Additionally, highly abundant pathogenic species such as Acinetobacter baumannii and Prevotella copri were also detected in all samples. This study suggests the drain to be allochthonous pollution vector that significantly contributes to bacterial community enrichment. From the results of this study, it is apparent that the lotic water may be used as the ecological reference to understand and monitor the variations in the bacterial communities and their co-occurrence dynamics in the fresh water ecosystems.


Asunto(s)
Ecosistema , Metagenoma , Agua Dulce , India , Prevotella , ARN Ribosómico 16S/genética , Agua , Contaminación del Agua/análisis
15.
Int J Biol Macromol ; 168: 371-382, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33310096

RESUMEN

The enzyme ß-glucosidase mediates the rate limiting step of conversion of cellobiose to glucose and thus plays a vital role in the process of cellulose degradation. The present study deals with analysis of the effective novel strain of Paenibacillus lautus BHU3 for identifying high-efficiency thermostable, glucose tolerant ß-glucosidases. Seven counterparts with elevated Tm values ranging from 64.6 to 75.8 °C with high thermo-stability, were revealed through this analysis. The blind molecular docking of the model enzymes structures with cellobiose and pNPG gave high negative interaction energies ranging from -11.33 to -13.29 and -6.43 to -9.054 (kcal mol-1), respectively. The enzyme WP_096774744.1 effectively formed 5 hydrogen bonds with the highest interaction energy (-13.29 kcal mol-1) with cellobiose at its catalytic site. Molecular dynamics simulation analysis performed for the WP_096774744.1-pNPG complex predicted Glu5, Arg7, Lue68, Gly69 and Phe325 as the major contributing residues for accomplishing hydrolysis of ß-1-4-linkage. Further, the molecular docking of WP_096774744.1 enzyme with glucose revealed a distinct glucose-binding site distant from the substrate-binding site, thus confirming the deficient competitive inhibition by glucose. Hence, WP_096774744.1 ß-glucosidase appears to be an efficient enzyme with enhanced activity to biodegrade the cellulosic materials and highly relevant for waste management and various industrial applications.


Asunto(s)
Paenibacillus/enzimología , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Dominio Catalítico , Celobiosa/química , Clonación Molecular/métodos , Glucosa/química , Concentración de Iones de Hidrógeno , Hidrólisis , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Paenibacillus/metabolismo , Especificidad por Sustrato
16.
Emerg Microbes Infect ; 9(1): 207-220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31985348

RESUMEN

Nutrient procurement specifically from nutrient-limiting environment is essential for pathogenic bacteria to survive and/or persist within the host. Long-term survival or persistent infection is one of the main reasons for the overuse of antibiotics, and contributes to the development and spread of antibiotic resistance. Mycobacterium tuberculosis is known for long-term survival within the host, and develops multidrug resistance. Before and during infection, the pathogen encounters various harsh environmental conditions. To cope up with such nutrient-limiting conditions, it is crucial to uptake essential nutrients such as ions, sugars, amino acids, peptides, and metals, necessary for numerous vital biological activities. Among the various types of transporters, ATP-binding cassette (ABC) importers are essentially unique to bacteria, accessible as drug targets without penetrating the cytoplasmic membrane, and offer an ATP-dependent gateway into the cell by mimicking substrates of the importer and designing inhibitors against substrate-binding proteins, ABC importers endeavour for the development of successful drug candidates and antibiotics. Alternatively, the production of antibodies against substrate-binding proteins could lead to vaccine development. In this review, we will emphasize the role of M. tuberculosis ABC importers for survival and virulence within the host. Furthermore, we will elucidate their unique characteristics to discover emerging therapies to combat tuberculosis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Mycobacterium tuberculosis/inmunología , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas/genética , Transporte Biológico , Diseño de Fármacos , Humanos , Mycobacterium tuberculosis/genética
17.
Funct Integr Genomics ; 20(1): 89-101, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31378834

RESUMEN

Cellulose, the most abundant polysaccharide in nature, is a rich source of renewable energy and sustains soil nutrients. Among the microorganisms known to degrade cellulose, bacteria are less studied compared to fungi. In the present work, we have investigated the culturable bacteria actively involved in cellulose degradation in forest and crop field soils. Based on clear zone formation and enzyme activity assay, we identified 7 bacterial strains positive for cellulose degradation. Of these, two most efficient strains (Bacillus cereus strains BHU1 and BHU2) were selected for whole genome sequencing, annotation, and information regarding GC content, number of genes, total subsystems, starch, and cellulose degradation pathways. Average nucleotide identity (ANI) showed more than 90% similarity between both the strains (BHU1 and BHU2) and with B. cereus ATCC 14579. Both the strains have genes and enzyme families like endoglucanase and ß-glucosidase as evident from whole genome sequence. Cellulase containing gene families (GH5, GH8, GH1), and many other carbohydrate-degrading enzymes, were present in both the bacterial strains. Taken together, the results suggest that the strains were efficient in cellulose degradation, and can be used for energy generation and production of value-added product.


Asunto(s)
Bacillus cereus/genética , Celulosa/metabolismo , Genoma Bacteriano , Agricultura , Antibacterianos/biosíntesis , Bacillus cereus/enzimología , Bacillus cereus/metabolismo , Bacterias/enzimología , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Celulasa/metabolismo , Bosques , Genes Bacterianos , Anotación de Secuencia Molecular , Metabolismo Secundario/genética , Suelo , Secuenciación Completa del Genoma
18.
Arch Microbiol ; 202(1): 17-29, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31444513

RESUMEN

The role and activity of bacterial endophytes remains largely unexplored and detail insight into Indian rice agro ecosystem is still little explored. In this study, we examined the diversity of endophytic bacteria in aerobic rice (variety ARB6) under aerobic and flooded field conditions. Based on 16S rRNA gene RFLP cloning sequencing, 900 clones with 144 representatives (72 aerobic and 72 flooded) revealed majority of clones affiliated to Gammaproteobacteria (64.58%), Betaproteobacteria (9.72%), Alphaproteobacteria (17.36), Firmicutes (6.26%) and Bacteroidetes (2.08). The study suggests that the aerobic rice variety harbours plant growth promoting (PGP) genera (viz. Pantoea, Enterobacter, Paenibacillus, etc). Investigations on aerobic rice under aerobic and flooded conditions revealed high richness and diversity of endophytic bacteria under aerobic condition inferring that the endophytic bacteria are beneficial for rice growth and productivity, and hence, would be helpful in designing better strategies for rice cultivation under drought or water scarce conditions.


Asunto(s)
Bacterias/genética , Biodiversidad , Endófitos/genética , Oryza/microbiología , Aerobiosis , Anaerobiosis , Bacterias/clasificación , Ecosistema , Endófitos/clasificación , ARN Ribosómico 16S/genética , Clima Tropical
19.
Gene ; 704: 31-41, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978480

RESUMEN

The microbial community mediated biogeochemical cycles play important role in global C-cycle and display a sensitive response to environmental changes. Limited information is available on microbial composition and functional diversity controlling biogeochemical cycles in the riverine environment. The Ganga River water and sediment samples were studied for environmental gene tags with reference to carbohydrate metabolism, photoheterotrophy and chemolithotrophy using high throughput shotgun metagenomic sequencing and functional annotation. The diversity of environmental gene tags specific microbial community was annotated against reference sequence database using Kaiju taxonomic classifier. The metagenomic analyses revealed that the river harbored a broad range of carbohydrate and energy metabolism genes. The in-depth investigation of metagenomic data revealed that the enzymes associated with reverse TCA cycle, Calvin-Benson cycle enzyme RuBisCO, starch and sucrose metabolism genes were highly abundant. The enzymes associated with sulfur metabolism such as EC:2.7.7.4 (sulfate to ammonium per sulfate), EC:1.8.1.2, EC:1.8.7.1 (sulfite to H2S) were prevalent in both the class of samples. The principal component analysis of the functional profiles revealed that the water and sediment samples were clustered distinctly suggesting that both the sites had variable abundance of functional genes and associated microbiota. The taxonomic classification showed abundance of Proteobacteria, Actinobacteria and Bacteroidetes phyla. Also, the metagenomic study showed the presence of purple sulfur bacteria viz. Thiodictyon, Nitrosococcus and purple non-sulfur bacteria viz. Bradyrhozobium and Rhodobacter. The study demonstrates that the Ganga River microbiome has prevalence of functional genes involved in carbohydrate anabolism and catabolism, and CO2 fixation with great prospects in cellulose and sulfide degrading enzyme production and characterization.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Crecimiento Quimioautotrófico/genética , Sedimentos Geológicos/microbiología , Metagenómica , Microbiota/genética , Ríos/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Código de Barras del ADN Taxonómico , Ambiente , Humanos , India , Redes y Vías Metabólicas/genética , Metagenoma , Metagenómica/métodos , ARN Ribosómico 16S/genética
20.
Bioresour Technol ; 278: 51-56, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30677698

RESUMEN

Isoprene, the highly reactive volatile organic compound, is used as monomer for the synthesis of several useful polymers. Its extensive production and usage leads to contamination of air. Once released, it alters the atmospheric chemistry by reacting with hydroxyl radicals (OH) and nitrogen oxides (NOx) to generate tropospheric ozone. Its prolonged exposure causes deleterious effects in human and plants. Therefore, its removal from the contaminated environment through biodegradation, provides a promising remedial solution. In the present study, isoprene utilizing bacteria namely, Pseudomonas sp., Arthrobacter sp., Bacillus sp. Sphingobacterium sp., Sphingobium sp., and Pantoea sp. were isolated and characterized from leaf surface of Madhuca latifolia and Tectona grandis, and also from soils under these plants. Their isoprene degrading capability and kinetics were assessed in batch mode. The isoprene degradation study indicated Pseudomonas sp. to be the most efficient isoprene degrader.


Asunto(s)
Arthrobacter/metabolismo , Butadienos/metabolismo , Hemiterpenos/metabolismo , Pseudomonas/metabolismo , Biodegradación Ambiental , Cinética , Óxidos de Nitrógeno/metabolismo , Ozono/metabolismo , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA