Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1279270, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026895

RESUMEN

Stable iodine isotopes are essential for humans as they are necessary for producing thyroid gland hormones. However, there are hazardous radioactive iodine isotopes that are emitted into the environment through radioactive waste generated by nuclear power plants, nuclear weapon tests, and medical practice. Due to the biophilic character of iodine radionuclides and their enormous biomagnification potential, their elimination from contaminated environments is essential to prevent the spread of radioactive pollution in ecosystems. Since microorganisms play a vital role in controlling iodine cycling and fate in the environment, they also can be efficiently utilized in solving the issue of contamination spread. Thus, this paper summarizes all known on microbial processes that are involved in iodine transformation to highlight their prospects in remediation of the sites contaminated with radioactive iodine isotopes.

2.
Nutrients ; 14(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36432402

RESUMEN

Selenium and iodine are essential trace elements for both humans and animals. Among other things, they have an essential role in thyroid function and the production of important hormones by the thyroid gland. Unfortunately, in many areas, soils are deficient in selenium and iodine, and their amount is insufficient to produce crops with adequate contents to cover the recommended daily intake; thus, deficiencies have an endemic character. With the introduction of iodized table salt in the food industry, the thyroid status of the population has improved, but several areas remain iodine deficient. Furthermore, due to the strong relationship between iodine and selenium in metabolic processes, selenium deficiency often compromises the desired positive impact of salt iodization efforts. Therefore, a considerable number of studies have looked for alternative methods for the simultaneous supplementation of selenium and iodine in foodstuff. In most cases, the subject of these studies is crops; recently, meat has also been a subject of interest. This paper reviews the most recent strategies in agriculture to fortify selenium and iodine in crop plants, their effect on the quality of the plant species used, and the potential impact of food processing on their stability in fortified crops.


Asunto(s)
Yodo , Selenio , Humanos , Animales , Biofortificación , Yoduros , Productos Agrícolas
3.
Polymers (Basel) ; 14(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36297831

RESUMEN

Pseudomonas biofilms have been studied intensively for several decades and research outcomes have been successfully implemented in various medical and agricultural applications. Research on biofilm synthesis and composition has also overlapped with the objectives of environmental sciences, since biofilm components show exceptional physicochemical properties applicable to remediation techniques. Especially, exopolysaccharides (ExPs) have been at the center of scientific interest, indicating their potential in solving the environmental issues of heavy metal land and water contamination via sorptive interactions and flocculation. Since exposure to heavy metal via contaminated water or soil poses an imminent risk to the environment and human health, ExPs provide an interesting and viable solution to this issue, alongside other effective and green remedial techniques (e.g., phytostabilization, implementation of biosolids, and biosorption using agricultural wastes) aiming to restore contaminated sites to their natural, pollution-free state, or to ameliorate the negative impact of heavy metals on the environment. Thus, we discuss the plausible role and performance of Pseudomonas ExPs in remediation techniques, aiming to provide the relevant available and comprehensive information on ExPs' biosynthesis and their usage in heavy metal remediation or other environmental applications, such as wastewater treatment via bioflocculation and soil remediation.

4.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613759

RESUMEN

Selenium can be highly toxic in excess for both animals and humans. However, since its mobile forms can be easily adsorbed with ferric minerals, its mobility in the natural oxic environment is generally not an issue. Still, the removal and immobilization of the long-lived radioactive isotope 79Se from the contaminated anoxic waters is currently a significant concern. 79Se can be accessible in the case of radionuclides' leaching from radioactive waste disposals, where anoxic conditions prevail and where ferrous ions and Fe(II)-bearing minerals predominate after corrosion processes (e.g., magnetite). Therefore, reductive and adsorptive immobilizations by Fe(II)-bearing minerals are the primary mechanisms for removing redox-sensitive selenium. Even though the information on the sorptive interactions of selenium and Fe(II)-bearing minerals seems to be well documented, this review focuses specifically on the state of the available information on the effects of the redox properties of Fe(II)-bearing solid phases (e.g., ferrous oxides, hydroxides, sulfides, and carbonates) on selenium speciation via redox transformation and co-occurring coprecipitation.


Asunto(s)
Residuos Radiactivos , Selenio , Humanos , Agua , Compuestos Férricos , Minerales , Hierro , Compuestos Ferrosos , Oxidación-Reducción
5.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34682230

RESUMEN

This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides' biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.

6.
J Fungi (Basel) ; 7(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34682232

RESUMEN

Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.

7.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34576122

RESUMEN

Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations.


Asunto(s)
Álcalis/química , Compuestos Férricos/química , Ácido Selénico/química , Ácido Selenioso/química , Precipitación Química , Cristalización , Hierro/química , Compuestos de Hierro/química , Minerales/química , Espectroscopía Infrarroja por Transformada de Fourier , Espectroscopía de Mossbauer , Temperatura
8.
Front Microbiol ; 12: 804081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003036

RESUMEN

Iodine is an essential micronutrient for most of the living beings, including humans. Besides its indispensable role in animals, it also plays an important role in the environment. It undergoes several chemical and biological transformations resulting in the production of volatile methylated iodides, which play a key role in the iodine's global geochemical cycle. Since it can also mitigate the process of climate change, it is reasonable to study its biogeochemistry. Therefore, the aim of this review is to provide information on its origin, global fluxes and mechanisms of production in the environment.

9.
Microorganisms ; 8(11)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33121130

RESUMEN

In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L-1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.

10.
Chemosphere ; 214: 168-175, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30265923

RESUMEN

Studies that deal with iodine mobility in uncontaminated agricultural soils are scarce and unique. Therefore, in this article, we have evaluated the sorption behavior of two most abundant naturally occurring inorganic iodine species - iodide and iodate - in several soil types. Our results showed that the sorption process is extremely slow with equilibrium achieved after ten days. The sorption of both iodine species is well described by Freundlich isotherm. The affinity of iodine for all investigated soils in the observed concentration range is relatively low. Our results showed that besides iodine speciation, sorption efficiency is highly dependent on soil types and their characteristics. While in mineral soils with low organic carbon content iodide sorption is dominant, organic rich soils are more favorable for iodate sorption. Organic carbon, clay content, pH and the abundance of iron, aluminum and manganese oxides and hydroxides showed to be the most important soil properties controlling iodine sorption. Our results provide new insight into the complex iodine behavior and retention in soils. This is crucial for better understanding of iodine mobility and the ability to enter the food chain.


Asunto(s)
Adsorción , Yodatos/química , Yoduros/química , Suelo/química , Carbono/análisis , Carbono/farmacología , Yodatos/aislamiento & purificación , Yoduros/aislamiento & purificación , Cinética , Minerales/análisis , Minerales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA