Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551904

RESUMEN

Major progress has been made over the last decade in identifying novel genes involved in neurodevelopmental disorders, although the task of elucidating their corresponding molecular and pathophysiological mechanisms, which are an essential prerequisite for developing therapies, has fallen far behind. We selected 45 genes for intellectual disabilities to generate and characterize mouse models. Thirty-nine of them were based on the frequency of pathogenic variants in patients and literature reports, with several corresponding to de novo variants, and six other candidate genes. We used an extensive screen covering the development and adult stages, focusing specifically on behaviour and cognition to assess a wide range of functions and their pathologies, ranging from basic neurological reflexes to cognitive abilities. A heatmap of behaviour phenotypes was established, together with the results of selected mutants. Overall, three main classes of mutant lines were identified based on activity phenotypes, with which other motor or cognitive deficits were associated. These data showed the heterogeneity of phenotypes between mutation types, recapitulating several human features, and emphasizing the importance of such systematic approaches for both deciphering genetic etiological causes of ID and autism spectrum disorders, and for building appropriate therapeutic strategies.

2.
Hum Mol Genet ; 27(12): 2138-2153, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29659809

RESUMEN

The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.


Asunto(s)
Epilepsia/genética , Proteínas de Homeodominio/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Contractura , Modelos Animales de Enfermedad , Epilepsia/fisiopatología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Lactante , Discapacidad Intelectual , Masculino , Ratones , Mutación , Trastornos del Neurodesarrollo/fisiopatología , Péptidos/genética , Prosencéfalo/fisiopatología , Paraplejía Espástica Hereditaria , Transcriptoma/genética , Adulto Joven
3.
Nucleic Acids Res ; 46(10): 4950-4965, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29554304

RESUMEN

Kleefstra syndrome, a disease with intellectual disability, autism spectrum disorders and other developmental defects is caused in humans by haploinsufficiency of EHMT1. Although EHMT1 and its paralog EHMT2 were shown to be histone methyltransferases responsible for deposition of the di-methylated H3K9 (H3K9me2), the exact nature of epigenetic dysfunctions in Kleefstra syndrome remains unknown. Here, we found that the epigenome of Ehmt1+/- adult mouse brain displays a marked increase of H3K9me2/3 which correlates with impaired expression of protocadherins, master regulators of neuronal diversity. Increased H3K9me3 was present already at birth, indicating that aberrant methylation patterns are established during embryogenesis. Interestingly, we found that Ehmt2+/- mice do not present neither the marked increase of H3K9me2/3 nor the cognitive deficits found in Ehmt1+/- mice, indicating an evolutionary diversification of functions. Our finding of increased H3K9me3 in Ehmt1+/- mice is the first one supporting the notion that EHMT1 can quench the deposition of tri-methylation by other Histone methyltransferases, ultimately leading to impaired neurocognitive functioning. Our insights into the epigenetic pathophysiology of Kleefstra syndrome may offer guidance for future developments of therapeutic strategies for this disease.


Asunto(s)
Cadherinas/genética , Disfunción Cognitiva/metabolismo , Anomalías Craneofaciales/metabolismo , Cardiopatías Congénitas/metabolismo , Histonas/metabolismo , Discapacidad Intelectual/metabolismo , Animales , Animales Recién Nacidos , Cadherinas/metabolismo , Deleción Cromosómica , Cromosomas Humanos Par 9/metabolismo , Disfunción Cognitiva/genética , Anomalías Craneofaciales/psicología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Cardiopatías Congénitas/psicología , Hipocampo/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Discapacidad Intelectual/psicología , Lisina/metabolismo , Masculino , Metilación , Ratones Noqueados
4.
Sci Rep ; 7(1): 18073, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273784

RESUMEN

The ability to assign expression patterns to the individual cell types that constitute a tissue is a major challenge. This especially applies to brain, given its plethora of different, functionally interconnected cell types. Here, we derived cell type-specific transcriptome signatures from existing single cell RNA data and integrated these signatures with a newly generated dataset of expression (bulk RNA-Seq) of the postnatal developing mouse hippocampus. This integrated analysis allowed us to provide a comprehensive and unbiased prediction of the differentiation drivers for 11 different hippocampal cell types and describe how the different cell types interact to support crucial developmental stages. Our results provide a reliable resource of predicted differentiation drivers and insights into the multifaceted aspects of the cells in hippocampus during development.


Asunto(s)
Diferenciación Celular/fisiología , Hipocampo/citología , Neuronas/citología , Transcriptoma , Animales , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Análisis de la Célula Individual
5.
Sci Rep ; 7(1): 9618, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851918

RESUMEN

ATP6AP2 codes for the (pro)renin receptor and is an essential component of vacuolar H+ ATPase. Activating (pro)renin for conversion of Angiotensinogen to Angiotensin makes ATP6AP2 attractive for drug intervention. Tissue-specific ATP6AP2 inactivation in mouse suggested a strong impact on various organs. Consistent with this, we found that embryonic ablation of Atp6ap2 resulted in both male hemizygous lethality and female haploinsufficiency. Next, we examined the phenotype of an induced inactivation in the adult animal, most akin to detect potential effect of functional interference of ATP6AP2 through drug therapy. Induced ablation of Atp6ap2, even without equal efficiency in all tissues (aorta, brain and kidney), resulted in rapid lethality marked by weight loss, changes in nutritional as well as blood parameters, leukocyte depletion, and bone marrow hypoplasia. Upon Atp6ap2 ablation, the colon demonstrated a rapid disruption of crypt morphology, aberrant proliferation, cell-death activation, as well as generation of microadenomas. Consequently, disruption of ATP6AP2 is extremely poorly tolerated in the adult, and severely affects various organ systems demonstrating that ATP6AP2 is an essential gene implicated in basic cellular mechanisms and necessary for multiple organ function. Accordingly, any potential drug targeting of this gene product must be strictly assessed for safety.


Asunto(s)
Insuficiencia Multiorgánica/mortalidad , Insuficiencia Multiorgánica/patología , ATPasas de Translocación de Protón/deficiencia , Receptores de Superficie Celular/deficiencia , Animales , Técnicas de Inactivación de Genes , Ratones , Análisis de Supervivencia
6.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26376863

RESUMEN

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Asunto(s)
Trastornos del Conocimiento/etiología , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Degeneración Nerviosa/etiología , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Discapacidad Intelectual/genética , Masculino , Ratones , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Trastornos Parkinsonianos/genética , Sinapsis/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura
7.
J Neurosci ; 32(2): 519-27, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238087

RESUMEN

Several gene mutations linked to intellectual disability in humans code for synaptic molecules implicated in small GTPase signaling. This is the case of the Rac/Cdc42 effector p21-activated kinase 3 (PAK3). The mechanisms responsible for the intellectual defects and the consequences of the mutation on the development and wiring of brain networks remain unknown. Here we show that expression of PAK3 mutants, suppression of PAK3, or inhibition of PAK3 function in rat hippocampal slice cultures interfere with activity-mediated spine dynamics. Inhibition of PAK3 resulted in two main alterations: (1) an increased growth of new, unstable spines, occurring in clusters, and mediated by activity; and (2) an impairment of plasticity-mediated spine stabilization interfering with the formation of persistent spines. Additionally, we find that PAK3 is specifically recruited by activity from dendrites into spines, providing a new mechanism through which PAK3 could participate in the control of both spine stabilization and local spine growth. Together, these data identify a novel function of PAK3 in regulating activity-mediated rearrangement of synaptic connectivity associated with learning and suggest that defects in spine formation and refinement during development could account for intellectual disability.


Asunto(s)
Discapacidad Intelectual/metabolismo , Red Nerviosa/metabolismo , Transmisión Sináptica/genética , Quinasas p21 Activadas/genética , Animales , Células HeLa , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/fisiopatología , Aprendizaje/fisiología , Ratones , Red Nerviosa/anomalías , Red Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , Ratas , Quinasas p21 Activadas/deficiencia
8.
Curr Opin Neurobiol ; 20(4): 519-27, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20413294

RESUMEN

Major progress has been carried out in the last two decades in the identification of genetic alterations associated with mental retardation and autism spectrum disorders. In many instances these defects concern genes coding for synaptic proteins or proteins involved in regulation of synaptic properties. Analyses of the underlying mechanisms using gain and loss of function approaches have revealed alterations of spine morphology, density or plasticity, raising the possibility that these disorders result from synaptopathies. Also the multiplicity of genes and proteins involved points to the implication of specific signaling pathways among which small GTPases appear to play a central role. We review here this evidence and discuss the mechanisms through which they might lead to synaptic network dysfunction.


Asunto(s)
Discapacidad Intelectual/patología , Transducción de Señal/fisiología , Sinapsis , Animales , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Biosíntesis de Proteínas/fisiología , Sinapsis/patología
9.
Am J Med Genet A ; 146A(10): 1267-79, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18412109

RESUMEN

We have investigated the breakpoints of a balanced reciprocal translocation between chromosomes X and 5, [46,X,t(X;5)(p11.1;q31.1)], in a woman with mild mental retardation (MR). Methylation studies showed a 100% skewed X-inactivation in patient-derived lymphocytes. Cloning and sequencing of the junction fragment from the X derivative showed that the breakpoint occurred in intron 3 of the CDKL3 gene on chromosome 5 and in a region devoid of genes on chromosome X. Quantitative RT-PCR analyses on patient-derived lymphoblastoid cells documented a significant 50% decrease of the CDKL3 transcript level. Allelic expression analysis, using an intronic SNP that was RT-PCR amplified from CDKL3 pre-mRNA, provided further evidence that the CDKL3 gene was transcribed from only one allele. Decreased CDKL3 gene expression was definitively confirmed at the protein level by immunoblot analysis. CDKL3 is a member of a subset of the cdc2-related protein kinase family that shows similarity to both mitogen-activated protein kinases (MAPK) and cyclin-dependant kinases (cdks). Importantly, one member of the family, CDKL5, has been implicated in atypical Rett syndrome, West syndrome, and X-linked infantile spasm, all including MR as a manifestation. Expression studies demonstrated that the mouse homologue, mCdkl3, was expressed in all brain regions investigated and throughout mouse development, a pattern that is consistent with a role in development and brain function. Together the data suggest that haploinsufficiency of CDKL3 in the t(X;5) patient contributes to her phenotype, and that the CDKL3 gene is a strong candidate for nonsyndromal autosomal dominant MR.


Asunto(s)
Cromosomas Humanos Par 5/genética , Cromosomas Humanos X/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Proteínas Serina-Treonina Quinasas/genética , Translocación Genética , Inactivación del Cromosoma X , Animales , Linfocitos B , Línea Celular Transformada , Femenino , Humanos , Masculino , Ratones
10.
Hum Genet ; 118(5): 578-90, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16249884

RESUMEN

The extensive heterogeneity underlying the genetic component of mental retardation (MR) is the main cause for our limited understanding of the aetiology of this highly prevalent condition. Hence we set out to identify genes involved in MR. We investigated the breakpoints of two balanced X;autosome translocations in two unrelated female patients with mild/moderate MR and found that the Xp11.2 breakpoints disrupt the novel human KIAA1202 (hKIAA1202) gene in both cases. We also identified a missense exchange in this gene, segregating with the Stocco dos Santos XLMR syndrome in a large four-generation pedigree but absent in >1,000 control X-chromosomes. Among other phenotypic characteristics, the affected males in this family present with severe MR, delayed or no speech, seizures and hyperactivity. Molecular studies of hKIAA1202 determined its genomic organisation, its expression throughout the brain and the regulation of expression of its mouse homologue during development. Transient expression of the wild-type KIAA1202 protein in HeLa cells showed partial colocalisation with the F-actin based cytoskeleton. On the basis of its domain structure, we argue that hKIAA1202 is a new member of the APX/Shroom protein family. Members of this family contain a PDZ and two ASD domains of unknown function and have been shown to localise at the cytoskeleton, and play a role in neurulation, cellular architecture, actin remodelling and ion channel function. Our results suggest that hKIAA1202 may be important in cognitive function and/or development.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cromosomas Humanos X , Clonación Molecular , ADN , Humanos , Ratones , Datos de Secuencia Molecular , Mutagénesis , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Fracciones Subcelulares/metabolismo , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...