Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Plant Biotechnol J ; 22(4): 904-914, 2024 Apr.
Article En | MEDLINE | ID: mdl-38051549

Glyphosate-resistant wheat plants were discovered in southern Alberta in 2017, representing an unauthorized GM release in Canada. The Canadian Food Inspection Agency undertook a series of experiments to characterize and identify this unknown GM wheat, as well as to develop and validate construct-specific and event-specific qPCR assays. Results of PCR-based assays and Sanger sequencing indicated the presence of CaMV 35S promoter (p35S), Rice Actin 1 intron (RactInt1), CP4-EPSPS gene and nopaline synthase terminator (tNOS) elements in the unknown GM wheat. Genome walking and bead capture strategies, combined with high-throughput sequencing, were used to identify the 5' and 3' wheat junctions and the subsequent mapping of the insert to chromosome 3B of the wheat genome. A probable transformation vector, pMON25497, was recognized, and further testing identified the unknown GM wheat as MON71200 event, one of two events obtained with the pMON25497 vector. The two construct-specific assays targeted the junctions of the RactInt1 and the CP4-EPSPS elements and the CP4-EPSPS and tNOS elements, while the event-specific assay was located at the 3' junction into the wheat genome. Both construct-specific and event-specific assays had limits of detection of 0.10% of MON71200 in a seed pool. As expected, the two construct-specific assays cross-reacted with other wheat and corn events containing the same elements in the same order. No cross-reactivity was observed for the event-specific assay. The integrated strategy employed in this study can serve as a model for other cases when facing similar challenges involving unknown GM events.


Glyphosate , Triticum , Plants, Genetically Modified/genetics , Triticum/genetics , Canada , High-Throughput Nucleotide Sequencing
2.
Front Vet Sci ; 10: 1217135, 2023.
Article En | MEDLINE | ID: mdl-38125681

Glanders is a highly contagious and life-threatening zoonotic disease caused by Burkholderia mallei (B. mallei). Without an effective vaccine or treatment, early diagnosis has been regarded as the most effective method to prevent glanders transmission. Currently, the diagnosis of glanders is heavily reliant on serological tests. However, given that markedly different host immune responses can be elicited by genetically different strains of the same bacterial species, infection by B. mallei, whose genome is unstable and plastic, may result in various immune responses. This variability can make the serodiagnosis of glanders challenging. Therefore, there is a need for a comprehensive understanding and assessment of how B. mallei genomic variations impact the appropriateness of specific target antigens for glanders serodiagnosis. In this study, we investigated how genomic variations in the B. mallei genome affect gene content (gene presence/absence) and expression, with a special focus on antigens used or potentially used in serodiagnosis. In all the genome sequences of B. mallei isolates available in NCBI's RefSeq database (accessed in July 2023) and in-house sequenced samples, extensive small and large variations were observed when compared to the type strain ATCC 23344. Further pan-genome analysis of those assemblies revealed variations of gene content among all available genomes of B. mallei. Specifically, differences in gene content ranging from 31 to 715 genes with an average of 334 gene presence-absence variations were found in strains with complete or chromosome-level genome assemblies, using the ATCC 23344 strain as a reference. The affected genes included some encoded proteins used as serodiagnostic antigens, which were lost due mainly to structural variations. Additionally, a transcriptomic analysis was performed using the type strain ATCC 23344 and strain Zagreb which has been widely utilized to produce glanders antigens. In total, 388 significant differentially expressed genes were identified between these two strains, including genes related to bacterial pathogenesis and virulence, some of which were associated with genomic variations, particularly structural variations. To our knowledge, this is the first comprehensive study to uncover the impacts of genetic variations of B. mallei on its gene content and expression. These differences would have significant impacts on host innate and adaptive immunity, including antibody production, during infection. This study provides novel insights into B. mallei genetic variants, knowledge which will help to improve glanders serodiagnosis.

3.
Article En | MEDLINE | ID: mdl-37326615

Four bacterial strains (S1Bt3, S1Bt7, S1Bt30 and S1Bt42T) isolated from soil collected from the rhizosphere of a native legume, Amphicarpaea bracteata, were investigated using a polyphasic approach. Colonies were fluorescent, white-yellowish, circular and convex with regular margins on King's B medium. Cells were Gram-reaction-negative, aerobic, non-spore-forming rods. Oxidase- and catalase-positive. The optimal growth temperature of the strains was 37 °C. Phylogenetic analysis of the 16S rRNA gene sequences placed the strains within the genus Pseudomonas. Analysis of the 16S rRNA-rpoD-gyrB concatenated sequences clustered the strains and well separated from Pseudomonas rhodesiae CIP 104664T and Pseudomonas grimontii CFM 97-514T with the type strains of the closest species. Phylogenomic analysis of 92 up-to-date bacterial core gene and matrix-assisted laser desorption/ionization-time-of-flight MS biotyper data confirmed the distinct clustering pattern of these four strains. Digital DNA-DNA hybridization (41.7 %-31.2 %) and average nucleotide identity (91.1 %-87.0 %) values relative to closest validly published Pseudomonas species were below the species delineation thresholds of 70 and 96 %, respectively. Fatty acid composition results validated the taxonomic position of the novel strains in the genus Pseudomonas. Phenotypic characteristics from carbon utilization tests differentiated the novel strains from closely related Pseudomonas species. In silico prediction of secondary metabolite biosynthesis gene clusters in the whole-genome sequences of the four strains revealed the presence of 11 clusters involved in the production of siderophore, redox-cofactor, betalactone, terpene, arylpolyene and nonribosomal peptides. Based on phenotypic and genotypic data, strains S1Bt3, S1Bt7, S1Bt30 and S1Bt42T represent a novel species for which the name Pseudomonas quebecensis sp. nov. is proposed. The type strain is S1Bt42T (=DOAB 746T=LMG 32141T=CECT 30251T). The genomic DNA G+C content is 60.95 mol%.


Fabaceae , Fabaceae/microbiology , Quebec , Soil , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Fatty Acids/chemistry , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition , Pseudomonas , Nucleic Acid Hybridization
4.
Microbiol Resour Announc ; 12(5): e0009723, 2023 May 17.
Article En | MEDLINE | ID: mdl-37067416

Mycobacterium bovis is the primary causative agent of bovine tuberculosis, a zoonotic infectious disease of concern for human health, livestock, and wildlife conservation. We report a complete genome sequence of an endemic Mycobacterium bovis strain affiliated with a wildlife reservoir of bovine tuberculosis found in wood bison in Wood Buffalo National Park, Canada.

5.
Front Microbiol ; 14: 1086198, 2023.
Article En | MEDLINE | ID: mdl-36937281

Introduction: Outbreak investigation of foodborne salmonellosis is hindered when the food source is contaminated by multiple strains of Salmonella, creating difficulties matching an incriminated organism recovered from patients with the specific strain in the suspect food. An outbreak of the rare Salmonella Adjame was caused by multiple strains of the organism as revealed by single-nucleotide polymorphism (SNP) variation. The use of highly discriminatory prophage analysis to characterize strains of Salmonella should enable a more precise strain characterization and aid the investigation of foodborne salmonellosis. Methods: We have carried out genomic analysis of S. Adjame strains recovered during the course of a recent outbreak and compared them with other strains of the organism (n = 38 strains), using SNPs to evaluate strain differences present in the core genome, and prophage sequence typing (PST) to evaluate the accessory genome. Phylogenetic analyses were performed using both total prophage content and conserved prophages. Results: The PST analysis of the S. Adjame isolates showed a high degree of strain heterogeneity. We observed small clusters made up of 2-6 isolates (n = 27) and singletons (n = 11) in stark contrast with the three clusters observed by SNP analysis. In total, we detected 24 prophages of which only four were highly prevalent, namely: Entero_p88 (36/38 strains), Salmon_SEN34 (35/38 strains), Burkho_phiE255 (33/38 strains) and Edward_GF (28/38 strains). Despite the marked strain diversity seen with prophage analysis, the distribution of the four most common prophages matched the clustering observed using core genome. Discussion: Mutations in the core and accessory genomes of S. Adjame have shed light on the evolutionary relationships among the Adjame strains and demonstrated a convergence of the variations observed in both fractions of the genome. We conclude that core and accessory genomes analyses should be adopted in foodborne bacteria outbreak investigations to provide a more accurate strain description and facilitate reliable matching of isolates from patients and incriminated food sources. The outcomes should translate to a better understanding of the microbial population structure and an 46 improved source attribution in foodborne illnesses.

6.
Microbiol Resour Announc ; 12(3): e0121322, 2023 Mar 16.
Article En | MEDLINE | ID: mdl-36786622

Mycobacterium bovis is the primary causative agent of bovine tuberculosis, a zoonotic infectious disease that presents a risk to public health, livestock, and wildlife. Here, we report complete genome sequences of two Mycobacterium bovis strains affiliated with bovine tuberculosis outbreaks in Canadian cattle farms in 2016 and 2018.

7.
Microbiol Resour Announc ; 11(7): e0029822, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35658536

Listeria monocytogenes, a Gram-positive, rod-shaped, non-spore-forming bacterium, is an important foodborne bacterial pathogen for humans worldwide. Here, we report the complete genome sequence of a Canadian Listeria monocytogenes strain with an antimicrobial resistance (AMR) gene that was isolated from lettuce.

8.
Microbiol Resour Announc ; 11(7): e0020022, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35658560

Listeria monocytogenes, a Gram-positive, rod-shaped, non-spore-forming bacterium, is an important foodborne bacterial pathogen for humans worldwide, with a high mortality rate. Here, we report the complete genome sequence of a Listeria monocytogenes strain with an antimicrobial resistance (AMR) gene, isolated from sprouts in Canada.

9.
Microbiol Resour Announc ; 11(7): e0027722, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35658702

Listeria monocytogenes is a Gram-positive, rod-shaped, non-spore-forming bacterium which is an important foodborne bacterial pathogen for human worldwide with 20-30% mortality. Here, we report circular complete genome sequences of three Listeria monocytogenes strains isolated from the samples of microgreens in Canada.

10.
Microbiol Resour Announc ; 11(7): e0029622, 2022 Jul 21.
Article En | MEDLINE | ID: mdl-35762752

Listeria monocytogenes is a Gram-positive, rod-shaped, non-spore-forming bacterium that is an important foodborne bacterial pathogen for humans worldwide, with high mortality rates. Here, we report the complete genome sequence of a Listeria monocytogenes strain that was isolated from kale salad in Canada.

11.
Can Vet J ; 63(2): 133-138, 2022 02.
Article En | MEDLINE | ID: mdl-35110768

A commercial breeding colony of bearded dragons (Pogona vitticeps) experienced an increase in mortality that affected females only. Before death, the animals had lost appetite and weight, were dehydrated, and some had labored breathing. Necropsy revealed granulomas in many organs (ovaries, lungs, liver, kidneys, heart, bone marrow) in which numerous acid-fast bacteria were identified. Bacterial isolation confirmed Mycobacterium spp., which was identified by whole genome sequencing as closely related to the Mycobacterium ulcerans-marinum complex. Due to the zoonotic potential of this bacterium and the poor prognosis for the remaining sick animals, the entire colony was culled and 7 animals were evaluated. The possible routes for introduction of this bacterium, the female predisposition to the disease, as well as the zoonotic potential of this microorganism are discussed. Key clinical message: An atypical Mycobacterium species closely related to Mycobacterium ulcerans-marinum complex can cause high female morality in captive bearded dragons.


Mortalité élevée de femelles dans une colonie de dragons barbus (Pogona vitticeps) causée par une mycobactérie atypique étroitement reliée au complexe Mycobacterium ulcerans-marinum . Une augmentation de la mortalité affectant uniquement les femelles est survenue dans une colonie de dragons barbus reproducteurs. Avant leur mort, ces animaux étaient anorexiques, amaigris, déshydratés et certains respiraient la gueule ouverte. Leur nécropsie révéla la présence de granulomes dans plusieurs viscères (poumons, coeur, reins, foie, ovaires, moelle osseuse), dans lesquels des bacilles acido-alcoolo-résistants étaient visibles à l'examen microscopique. L'isolement bactérien a permis de confirmer qu'il s'agissait bien de Mycobacterium spp. et les analyses moléculaires ont démontré que cette mycobactérie était étroitement reliée au complexe Mycobacterium ulcerans-marinum. À cause du potentiel zoonotique de cette infection et du pronostic sombre, la colonie entière fut euthanasiée et sept (7) animaux soumis pour nécropsie. Les causes potentielles d'introduction de cette bactérie dans la colonie, la prédisposition particulière des femelles à cette infection et le risque zoonotique qui y est associé seront discutés.Message clinique clé :Une mycobactérie étroitement associée au complexe Mycobacterium ulcerans-marinum peut causer une mortalité élevée chez les dragons barbus en captivité et cibler tout particulièrement les femelles.(Traduit par les auteurs).


Lizards , Mycobacterium ulcerans , Mycobacterium , Animals , Female , Liver , Lizards/microbiology , Nontuberculous Mycobacteria
12.
Mol Plant Pathol ; 23(3): 339-354, 2022 03.
Article En | MEDLINE | ID: mdl-34921486

Several Peronospora species are carried by wind over short and long distances, from warmer climates where they survive on living plants to cooler climates. In eastern Canada, this annual flow of sporangia was thought to be the main source of Peronospora destructor responsible for onion downy mildew. However, the results of a recent study showed that the increasing frequency of onion downy mildew epidemics in eastern Canada is associated with warmer autumns, milder winters, and previous year disease severity, suggesting overwintering of the inoculum in an area where the pathogen is not known to be endogenous. In this study, genotyping by sequencing was used to investigate the population structure of P. destructor at the landscape scale. The study focused on a particular region of southwestern Québec-Les Jardins de Napierville-to determine if the populations were clonal and regionally differentiated. The data were characterized by a high level of linkage disequilibrium, characteristic of clonal organisms. Consequently, the null hypothesis of random mating was rejected when tested on predefined or nonpredefined populations, indicating that linkage disequilibrium was not a function of population structure and suggesting a mixed reproduction mode. Discriminant analysis of principal components performed with predefined population assignment allowed grouping P. destructor isolates by geographical regions, while analysis of molecular variance confirmed that this genetic differentiation was significant at the regional level. Without using a priori population assignment, isolates were clustered into four genetic clusters. These results represent a baseline estimate of the genetic diversity and population structure of P. destructor.


Oomycetes , Peronospora , Canada , Genotype , Onions , Plant Diseases , Quebec
13.
PeerJ ; 9: e12050, 2021.
Article En | MEDLINE | ID: mdl-34703657

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; initially named as 2019-nCoV) is the cause of the novel coronavirus disease 2019 (COVID-19) pandemic. Its diagnosis relies on the molecular detection of the viral RNA by polymerase chain reaction (PCR) while newer rapid CRISPR-based diagnostic tools are being developed. As molecular diagnostic assays rely on the detection of unique sequences of viral nucleic acid, the target regions must be common to all coronavirus SARS-CoV-2 circulating strains, yet unique to SARS-CoV-2 with no cross-reactivity with the genome of the host and other normal or pathogenic organisms potentially present in the patient samples. This stage 1 protocol proposes in silico cross-reactivity and inclusivity analysis of the recently developed CRISPR-based diagnostic assays. Cross-reactivity will be analyzed through comparison of target regions with the genome sequence of the human, seven coronaviruses and 21 other organisms. Inclusivity analysis will be performed through the verification of the sequence variability within the target regions using publicly available SARS-CoV-2 sequences from around the world. The absence of cross-reactivity and any mutations in target regions of the assay used would provide a higher degree of confidence in the CRISPR-based diagnostic tests being developed while the presence could help guide the assay development efforts. We believe that this study would provide potentially important information for clinicians, researchers, and decision-makers.

14.
Antibiotics (Basel) ; 10(3)2021 Mar 05.
Article En | MEDLINE | ID: mdl-33807748

Salmonella Infantis, a common contaminant of poultry products, is known to harbor mobile genetic elements that confer multi-drug resistance (MDR) and have been detected in many continents. Here, we report four MDR S. Infantis strains recovered from poultry house environments in Santa Cruz Island of the Galapagos showing extended-spectrum ß-lactamase (ESBL) resistance and reduced fluoroquinolone susceptibility. Whole-genome sequencing (WGS) revealed the presence of the ESBL-conferring blaCTX-M-65 gene in an IncFIB-like plasmid in three S. Infantis isolates. Multi-locus sequence typing (MLST) and single nucleotide variant/polymorphism (SNP) SNVPhyl analysis showed that the S. Infantis isolates belong to sequence type ST32, likely share a common ancestor, and are closely related (1-3 SNP difference) to blaCTX-M-65-containing clinical and veterinary S. Infantis isolates from the United States and Latin America. Furthermore, phylogenetic analysis of SNPs following core-genome alignment (i.e., ParSNP) inferred close relatedness between the S. Infantis isolates from Galapagos and the United States. Prophage typing confirmed the close relationship among the Galapagos S. Infantis and was useful in distinguishing them from the United States isolates. This is the first report of MDR blaCTX-M-65-containing S. Infantis in the Galapagos Islands and highlights the need for increased monitoring and surveillance programs to determine prevalence, sources, and reservoirs of MDR pathogens.

15.
PeerJ ; 9: e10586, 2021.
Article En | MEDLINE | ID: mdl-33628630

Campylobacter fetus is currently classified into three main subspecies, but only two of these, C. fetus subspecies fetus and C. fetus subsp. venerealis originate principally from ruminants where they inhabit different niches and cause distinct pathogenicity. Their importance as pathogens in international trade and reporting is also different yet the criteria defining these properties have never been fully substantiated nor understood. The situation is further compromised because the ability to differentiate between these two closely related C. fetus subspecies has traditionally been performed by phenotypic characterisation of isolates, methods which are limited in scope, time-consuming, tedious, and often yield inconsistent results, thereby leading to isolate misidentification. The development of robust genetic markers that could enable rapid discrimination between C. fetus subsp. fetus and subsp. venerealis has also been challenging due to limited differences in the gene complement of their genomes, high levels of sequence repetition, the small number of closed genome sequences available and the lack of standardisation of the discriminatory biochemical tests employed for comparative purposes. To yield a better understanding of the genomic differences that define these C. fetus strains, seven isolates were exhaustively characterised phenotypically and genetically and compared with seven previously well characterised isolates. Analysis of these 14 C. fetus samples clearly illustrated that adaption by C. fetus subsp. venerealis to the bovine reproductive tract correlated with increasing genome length and plasticity due to the acquisition and propagation of several mobile elements including prophages, transposons and plasmids harbouring virulence factors. Significant differences in the repertoire of the CRISPR (clustered regularly interspersed short palindromic repeats)-cas system of all C. fetus strains was also found. We therefore suggest that a deficiency in this adaptive immune system may have permitted the emergence of extensive genome plasticity and led to changes in host tropism through gene disruption and/or changes in gene expression. Notable differences in the sub-species complement of DNA adenine methylase genes may also have an impact. These data will facilitate future studies to better understand the precise genetic differences that underlie the phenotypic and virulence differences between these animal pathogens and may identify additional markers useful for diagnosis and sub-typing.

16.
Microbiol Resour Announc ; 9(46)2020 Nov 12.
Article En | MEDLINE | ID: mdl-33184156

Klebsiella michiganensis is a Gram-negative opportunistic pathogen that is associated with many hospital-acquired infections in humans. Here, we report the complete genome sequence of a K. michiganensis strain isolated from a Canadian wastewater treatment facility.

17.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Article En | MEDLINE | ID: mdl-32855241

The complete genome sequences of 12 isolates of the rare Salmonella enterica serovar Adjame were determined by combining Nanopore and Illumina sequence reads. Chromosome sizes ranged from 4,597,011 bp to 4,678,052 bp, and the GC content was 52.3%. A virulent plasmid of 87,433 bp was found in only one isolate.

18.
Front Microbiol ; 11: 1322, 2020.
Article En | MEDLINE | ID: mdl-32625191

This study identifies a strain of Salmonella enterica subspecies enterica serovar Enteritidis that harbors a highly unusual virulence plasmid. During the characterisation of a group of S. Enteritidis isolates, 10 isolates recovered from Canadian duck production facilities, of which seven were phage type 9b and three were closely related atypical phage types, failed detection by a PCR targeting the prot6e gene, a marker located on the virulence plasmid often employed for identification of this serovar. Comparison to prot6e+ isolates by several standard genetic typing tools, further revealed their distinctive genomic makeup. Both short read and long read whole genome sequencing were completed on six of these isolates. In addition to loss of the prot6e gene, the virulence plasmid of each isolate was found to be exceptionally large (86.5 Kb) due to a 28 Kb insertion of S. Typhimurium plasmid sequence that encodes multiple genes of the incF operon. Interrogation of the chromosome sequence data of these isolates using a SNP-based typing tool and MLST both indicated their close genetic relatedness. One additional isolate carrying this plasmid was identified in an in-house collection of S. Enteritidis isolates. Finally, the identification of this unusual plasmid sequence in additional isolates submitted to public repositories of Salmonella sequence data was explored. All these analyses indicated that a very distinctive but rarely reported strain of S. Enteritidis was widely distributed across North America and the United Kingdom with one additional report involving a case from Brazil. With increased use of genetic methods for Salmonella identification, the loss of the prot6e sequence may confound correct identification of this serovar while also potentially altering the mode of transmission to humans given the gene's role in facilitating propagation of this bacterium in eggs. Accordingly, this strain may present certain challenges with respect to public health investigations. Our studies also suggest this strain is often associated with duck hosts thereby providing a possible mechanism by which this strain has spread over an extensive geographical area.

19.
Microbiol Resour Announc ; 9(25)2020 Jun 18.
Article En | MEDLINE | ID: mdl-32554786

Complete genome sequences of eight isolates of Salmonella enterica subsp. enterica from Canadian wild birds were determined by MinION and Illumina MiSeq sequencing. Assembled chromosomes had an average size of 4,833,662 bp. Salmonella enterica serovar Worthington obtained from partridge and quail carried 267-kb plasmids, which contained multiple antimicrobial resistance genes.

20.
Front Microbiol ; 11: 602, 2020.
Article En | MEDLINE | ID: mdl-32362880

The rapid detection of foodborne microbial pathogens contaminating fresh fruits and vegetables during the intervening period between harvest and consumption could revolutionize microbial quality assurance of food usually consumed raw and those with a limited shelf life. We have developed a sensitive, shotgun whole genome sequencing protocol capable of detecting as few as 1 colony forming unit (cfu) of Salmonella enterica serovar Typhimurium spiked on 25 g of lettuce. The Ion Torrent sequencing platform was used to generate reads of globally amplified DNA from microbes recovered from the surface of lettuce followed by bioinformatic analyses of the nucleotide sequences to detect the presence of Salmonella. The test is rapid and sensitive, and appropriate for testing perishable foods, and those consumed raw, for Salmonella contamination. The test has the potential to be universally applicable to any microbial contaminant on lettuce as long as a suitable bioinformatics pipeline is available and validated. A universal test is expected to pave the way for preventive and precision food safety and the re-shaping of the entire spectrum of food safety investigations from the current disease-limiting, reactive procedure to a proactive, disease prevention process.

...