Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Bioorg Med Chem Lett ; 42: 128010, 2021 06 15.
Article En | MEDLINE | ID: mdl-33811992

Myeloperoxidase (MPO), a critical enzyme in antimicrobial host-defense, has been implicated in chronic inflammatory diseases such as coronary artery disease. The design and evaluation of MPO inhibitors for the treatment of cardiovascular disease are reported herein. Starting with the MPO and triazolopyridine 3 crystal structure, novel inhibitors were designed incorporating a substituted pyrazole, which allowed for substituents to interact with hydrophobic and hydrophilic patches in the active site. SAR exploration of the substituted pyrazoles led to piperidine 17, which inhibited HOCl production from activated neutrophils with an IC50 value of 2.4 µM and had selectivity against thyroid peroxidase (TPO). Optimization of alkylation chemistry on the pyrazole nitrogen facilitated the preparation of many analogs, including macrocycles designed to bridge two hydrophobic regions of the active site. Multiple macrocyclization strategies were pursued to prepare analogs that optimally bound to the active site, leading to potent macrocyclic MPO inhibitors with TPO selectivity, such as compound 30.


Enzyme Inhibitors/pharmacology , Macrocyclic Compounds/pharmacology , Peroxidase/antagonists & inhibitors , Pyrazoles/pharmacology , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Molecular Structure , Peroxidase/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem ; 28(22): 115723, 2020 11 15.
Article En | MEDLINE | ID: mdl-33007547

Myeloperoxidase (MPO) is a heme peroxidase found in neutrophils, monocytes and macrophages that efficiently catalyzes the oxidation of endogenous chloride into hypochlorous acid for antimicrobial activity. Chronic MPO activation can lead to indiscriminate protein modification causing tissue damage, and has been associated with chronic inflammatory diseases, atherosclerosis, and acute cardiovascular events. Triazolopyrimidine 5 is a reversible MPO inhibitor; however it suffers from poor stability in acid, and is an irreversible inhibitor of the DNA repair protein methyl guanine methyl transferase (MGMT). Structure-based drug design was employed to discover benzyl triazolopyridines with improved MPO potency, as well as acid stability, no reactivity with MGMT, and selectivity against thyroid peroxidase (TPO). Structure-activity relationships, a crystal structure of the MPO-inhibitor complex, and acute in vivo pharmacodynamic data are described herein.


Drug Discovery , Enzyme Inhibitors/pharmacology , Peroxidase/antagonists & inhibitors , Pyridines/pharmacology , Triazoles/pharmacology , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Docking Simulation , Molecular Structure , Peroxidase/metabolism , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
3.
ACS Med Chem Lett ; 9(12): 1175-1180, 2018 Dec 13.
Article En | MEDLINE | ID: mdl-30613322

Myeloperoxidase (MPO) generates reactive oxygen species that potentially contribute to many chronic inflammatory diseases. A recently reported triazolopyrimidine MPO inhibitor was optimized to improve acid stability and remove methyl guanine methyl transferase (MGMT) activity. Multiple synthetic routes were explored that allowed rapid optimization of a key benzyl ether side chain. Crystal structures of inhibitors bound to the MPO active site demonstrated alternate binding modes and guided rational design of MPO inhibitors. Thioether 36 showed significant inhibition of MPO activity in an acute mouse inflammation model after oral dosing.

4.
Medchemcomm ; 8(11): 2093-2099, 2017 Nov 01.
Article En | MEDLINE | ID: mdl-30108726

Myeloperoxidase, a mammalian peroxidase involved in the immune system as an anti-microbial first responder, can produce hypochlorous acid in response to invading pathogens. Myeloperoxidase has been implicated in several chronic pathological diseases due to the chronic production of hypochlorous acid, as well as other reactive radical species. A high throughput screen and triaging protocol was developed to identify a reversible inhibitor of myeloperoxidase toward the potential treatment of chronic diseases such as atherosclerosis. The identification and characterization of a reversible myeloperoxidase inhibitor, 7-(benzyloxy)-3H-[1,2,3]triazolo[4,5-d]pyrimidin-5-amine is described.

5.
PLoS One ; 8(8): e71541, 2013.
Article En | MEDLINE | ID: mdl-24015188

High density lipoprotein (HDL) cholesterol levels are associated with decreased risk of cardiovascular disease, but not all HDL are functionally equivalent. A primary determinant of HDL functional status is the conformational adaptability of its main protein component, apoA-I, an exchangeable apolipoprotein. Chemical modification of apoA-I, as may occur under conditions of inflammation or diabetes, can severely impair HDL function and is associated with the presence of cardiovascular disease. Chemical modification of apoA-I also impairs its ability to exchange on and off HDL, a critical process in reverse cholesterol transport. In this study, we developed a method using electron paramagnetic resonance spectroscopy (EPR) to quantify HDL-apoA-I exchange. Using this approach, we measured the degree of HDL-apoA-I exchange for HDL isolated from rabbits fed a high fat, high cholesterol diet, as well as human subjects with acute coronary syndrome and metabolic syndrome. We observed that HDL-apoA-I exchange was markedly reduced when atherosclerosis was present, or when the subject carries at least one risk factor of cardiovascular disease. These results show that HDL-apoA-I exchange is a clinically relevant measure of HDL function pertinent to cardiovascular disease.


Apolipoprotein A-I/blood , Atherosclerosis/blood , Lipoproteins, HDL/blood , Acute Coronary Syndrome/blood , Adult , Aged , Animals , Apolipoprotein A-I/chemistry , Case-Control Studies , Female , Humans , Hydrogen Peroxide/chemistry , Male , Metabolic Syndrome/blood , Middle Aged , Oxidants/chemistry , Oxidation-Reduction , Peroxidase/chemistry , Protein Binding , Rabbits , Risk Factors , Young Adult
6.
J Biol Chem ; 285(52): 40965-78, 2010 Dec 24.
Article En | MEDLINE | ID: mdl-20937814

PCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ∼4-fold enhanced activity. Removal of the prosegment acidic stretch resulted in ∼3-fold higher binding to LDLR in vitro, in ≥4-fold increased activity on cellular LDLR, and faster cellular internalization in endosome/lysosome-like compartments. Finally, swapping the acidic stretch of PCSK9 with a similar one found in the glycosylphosphatidylinositol-anchored heparin-binding protein 1 does not impair PCSK9 autoprocessing, secretion, or activity and confirmed that the acidic stretch acts as an inhibitor of PCSK9 function. We also show that upon short exposure to pH values 6.5 to 5.5, an ∼2.5-fold increase in PCSK9 activity on total and cell surface LDLR occurs, and PCSK9 undergoes a second cleavage at Arg(248), generating a two-chain PCSK9-ΔN(248). At pH values below 5.5, PCSK9 dissociates from its prosegment and loses its activity. This pH-dependent activation of PCSK9 represents a novel pathway to further activate PCSK9 in acidic endosomes. These data enhance our understanding of the functional role of the acidic prosegment and on the effect of pH in the regulation of PCSK9 activity.


Endosomes/enzymology , Peptides/metabolism , Protein Processing, Post-Translational/physiology , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Endosomes/genetics , Enzyme Activation/physiology , HEK293 Cells , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/enzymology , Lysosomes/genetics , Moths , Peptides/genetics , Proprotein Convertase 9 , Proprotein Convertases , Protein Binding/physiology , Receptors, LDL/genetics , Serine Endopeptidases/genetics
7.
J Biol Chem ; 284(42): 28856-64, 2009 Oct 16.
Article En | MEDLINE | ID: mdl-19635789

Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia. PCSK9 binds the epidermal growth factor domain A (EGF-A) of the LDLR and directs it to endosomes/lysosomes for destruction. Although the mechanism by which PCSK9 regulates LDLR degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways. Here, we show that clathrin light chain small interfering RNAs that block intracellular trafficking from the trans-Golgi network to lysosomes rapidly increased LDLR levels within HepG2 cells in a PCSK9-dependent fashion without affecting the ability of exogenous PCSK9 to enhance LDLR degradation. In contrast, blocking the extracellular LDLR endocytosis/degradation pathway by a 4-, 6-, or 24-h incubation of cells with Dynasore or an EGF-AB peptide or by knockdown of endogenous autosomal recessive hypercholesterolemia did not significantly affect LDLR levels. The present data from HepG2 cells and mouse primary hepatocytes favor a model whereby depending on the dose and/or incubation period, endogenous PCSK9 enhances the degradation of the LDLR both extra- and intracellularly. Therefore, targeting either pathway, or both, would be an effective method to reduce PCSK9 activity in the treatment of hypercholesterolemia and coronary heart disease.


Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Clathrin Light Chains/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Hepatocytes/metabolism , Humans , Hypercholesterolemia/metabolism , Lysosomes/metabolism , Mice , Proprotein Convertase 9 , Proprotein Convertases , Protein Structure, Tertiary , trans-Golgi Network/metabolism
8.
Physiol Genomics ; 22(2): 244-56, 2005 Jul 14.
Article En | MEDLINE | ID: mdl-15886330

alpha-Sarcoglycan-deficient (Sgca-null) mice provide potential for elucidating the pathogenesis of limb girdle muscular dystrophy type 2D (LGMD 2D) as well as for studying the effectiveness of therapeutic strategies. Skeletal muscles of Sgca-null mice demonstrate an early onset of extensive fiber necrosis, degeneration, and regeneration, but the progression of the pathology and the effects on muscle structure and function throughout the life span are not known. Thus the phenotypic accuracy of the Sgca-null mouse as a model of LGMD 2D has not been fully established. To investigate skeletal muscle structure and function in the absence of alpha-sarcoglycan throughout the life span, we analyzed extensor digitorum longus and soleus muscles of male and female Sgca-null and wild-type mice at 3, 6, 12, and 18 mo of age. Maximum isometric forces and powers were measured in vitro at 25 degrees C. Also determined were individual myofiber cross-sectional areas and numbers, water content, and the proportion of the cross section occupied by connective tissue. Muscle masses were 40-100% larger for Sgca-null compared with age- and gender-matched wild-type mice, with the majority of the increased muscle mass for Sgca-null mice attributable to greater connective tissue and water contents. Although the greater mass of muscles in Sgca-null mice was primarily noncontractile material, absolute forces and powers were maintained near control levels at all ages, indicating a successful adaptation to the deficiency in alpha-sarcoglycan not observed at any age in LGMD 2D patients.


Muscle, Skeletal/physiology , Sarcoglycans/deficiency , Animals , Body Weight , Connective Tissue , Isometric Contraction/physiology , Mice , Mice, Knockout , Muscle Fibers, Skeletal , Muscle, Skeletal/pathology , Organ Size , Sarcoglycans/metabolism
...