Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Curr Biol ; 34(11): 2279-2293.e6, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38776902

Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.


Cell Cycle Proteins , Kinetochores , Microtubules , Protein Serine-Threonine Kinases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Kinetochores/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Microtubules/metabolism , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Nuclear Proteins
2.
J Am Chem Soc ; 145(28): 15251-15264, 2023 07 19.
Article En | MEDLINE | ID: mdl-37392180

Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.


Lysine , Microtubule-Associated Proteins , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Lysine/metabolism , Kinetochores/metabolism , Nuclear Proteins/chemistry , Microtubules/metabolism
3.
Elife ; 102021 07 26.
Article En | MEDLINE | ID: mdl-34308839

Kinetochores are multi-subunit protein assemblies that link chromosomes to microtubules of the mitotic and meiotic spindle. It is still poorly understood how efficient, centromere-dependent kinetochore assembly is accomplished from hundreds of individual protein building blocks in a cell cycle-dependent manner. Here, by combining comprehensive phosphorylation analysis of native Ctf19CCAN subunits with biochemical and functional assays in the model system budding yeast, we demonstrate that Cdk1 phosphorylation activates phospho-degrons on the essential subunit Ame1CENP-U, which are recognized by the E3 ubiquitin ligase complex SCF-Cdc4. Gradual phosphorylation of degron motifs culminates in M-phase and targets the protein for degradation. Binding of the Mtw1Mis12 complex shields the proximal phospho-degron, protecting kinetochore-bound Ame1 from the degradation machinery. Artificially increasing degron strength partially suppresses the temperature sensitivity of a cdc4 mutant, while overexpression of Ame1-Okp1 is toxic in SCF mutants, demonstrating the physiological importance of this mechanism. We propose that phospho-regulated clearance of excess CCAN subunits facilitates efficient centromere-dependent kinetochore assembly. Our results suggest a novel strategy for how phospho-degrons can be used to regulate the assembly of multi-subunit complexes.


Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , DNA-Binding Proteins/metabolism , F-Box Proteins/metabolism , Kinetochores/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Cell Cycle Proteins/genetics , Cell Division , Centromere/metabolism , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/chemistry , F-Box Proteins/genetics , Microtubule-Associated Proteins/genetics , Mutation, Missense , Organisms, Genetically Modified , Phosphorylation , Protein Stability , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Spindle Apparatus/metabolism , Ubiquitin-Protein Ligases/genetics
4.
EMBO J ; 40(18): e108004, 2021 09 15.
Article En | MEDLINE | ID: mdl-34313341

Kinetochores form the link between chromosomes and microtubules of the mitotic spindle. The heterodecameric Dam1 complex (Dam1c) is a major component of the Saccharomyces cerevisiae outer kinetochore, assembling into 3 MDa-sized microtubule-embracing rings, but how ring assembly is specifically initiated in vivo remains to be understood. Here, we describe a molecular pathway that provides local control of ring assembly during the establishment of sister kinetochore bi-orientation. We show that Dam1c and the general microtubule plus end-associated protein (+TIP) Bim1/EB1 form a stable complex depending on a conserved motif in the Duo1 subunit of Dam1c. EM analyses reveal that Bim1 crosslinks protrusion domains of adjacent Dam1c heterodecamers and promotes the formation of oligomers with defined curvature. Disruption of the Dam1c-Bim1 interaction impairs kinetochore localization of Dam1c in metaphase and delays mitosis. Phosphorylation promotes Dam1c-Bim1 binding by relieving an intramolecular inhibition of the Dam1 C-terminus. In addition, Bim1 recruits Bik1/CLIP-170 to Dam1c and induces formation of full rings even in the absence of microtubules. Our data help to explain how new kinetochore end-on attachments are formed during the process of attachment error correction.


Kinetochores/metabolism , Microtubule Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Saccharomycetales/physiology , Chromosome Segregation , Mitosis/physiology , Multiprotein Complexes/metabolism , Phosphorylation , Protein Binding , Spindle Apparatus/metabolism
...