Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 98(1): e0152223, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38169306

RESUMEN

Understanding how different amino acids affect the HIV-1 envelope (Env) trimer will greatly help the design and development of vaccines that induce broadly neutralizing antibodies (bnAbs). A tryptophan residue at position 375 that opens the CD4 binding site without modifying the trimer apex was identified using our saturation mutagenesis strategy. 375W was introduced into a large panel of 27 transmitted/founder, acute stage, chronic infection, and AIDS macrophage-tropic and non-macrophage-tropic primary envelopes from different clades (A, B, C, D, and G) as well as complex and circulating recombinants. We evaluated soluble CD4 and monoclonal antibody neutralization of WT and mutant Envs together with macrophage infection. The 375W substitution increased sensitivity to soluble CD4 in all 27 Envs and macrophage infection in many Envs including an X4 variant. Importantly, 375W did not impair or abrogate neutralization by potent bnAbs. Variants that were already highly macrophage tropic were compromised for macrophage tropism, indicating that other structural factors are involved. Of note, we observed a macrophage-tropic (clade G) and intermediate macrophage-tropic (clades C and D) primary Envs from the blood and not from the central nervous system (CNS), indicating that such variants could be released from the brain or evolve outside the CNS. Our data also indicate that "intermediate" macrophage-tropic variants should belong to a new class of HIV-1 tropism. These Envs infected macrophages more efficiently than non-macrophage-tropic variants without reaching the high levels of macrophage-tropic brain variants. In summary, we show that 375W is ideal for inclusion into HIV-1 vaccines, increasing Env binding to CD4 for widely diverse Envs from different clades and disease stages.IMPORTANCESubstitutions exposing the CD4 binding site (CD4bs) on HIV-1 trimers but still occluding non-neutralizing, immunogenic epitopes are desirable to develop HIV-1 vaccines. If such substitutions induce similar structural changes in trimers across diverse clades, they could be exploited for the development of multi-clade envelope (Env) vaccines. We show that the 375W substitution increases CD4 affinity for envelopes of all clades, circulating recombinant forms, and complex Envs tested, independent of disease stage. Clade B and C Envs with an exposed CD4bs were described for macrophage-tropic strains from the central nervous system (CNS). Here, we show that intermediate (clades C and D) and macrophage-tropic (clade G) envelopes can be detected outside the CNS. Vaccines targeting the CD4bs will be particularly effective against such strains and CNS disease.


Asunto(s)
Infecciones por VIH , VIH-1 , Tropismo Viral , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Humanos , Anticuerpos ampliamente neutralizantes/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/genética , Mutación , Desarrollo de Vacunas , Macrófagos/virología , Antígenos CD4
2.
PLoS Pathog ; 13(3): e1006255, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28264054

RESUMEN

A hallmark of HIV-1 infection is the continuously declining number of the virus' predominant target cells, activated CD4+ T cells. With diminishing CD4+ T cell levels, the capacity to utilize alternate cell types and receptors, including cells that express low CD4 receptor levels such as macrophages, thus becomes crucial. To explore evolutionary paths that allow HIV-1 to acquire a wider host cell range by infecting cells with lower CD4 levels, we dissected the evolution of the envelope-CD4 interaction under in vitro culture conditions that mimicked the decline of CD4high target cells, using a prototypic subtype B, R5-tropic strain. Adaptation to CD4low targets proved to severely alter envelope functions including trimer opening as indicated by a higher affinity to CD4 and loss in shielding against neutralizing antibodies. We observed a strikingly decreased infectivity on CD4high target cells, but sustained infectivity on CD4low targets, including macrophages. Intriguingly, the adaptation to CD4low targets altered the kinetic of the entry process, leading to rapid CD4 engagement and an extended transition time between CD4 and CCR5 binding during entry. This phenotype was also observed for certain central nervous system (CNS) derived macrophage-tropic viruses, highlighting that the functional perturbation we defined upon in vitro adaptation to CD4low targets occurs in vivo. Collectively, our findings suggest that CD4low adapted envelopes may exhibit severe deficiencies in entry fitness and shielding early in their evolution. Considering this, adaptation to CD4low targets may preferentially occur in a sheltered and immune-privileged environment such as the CNS to allow fitness restoring compensatory mutations to occur.


Asunto(s)
Antígenos CD4/metabolismo , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/virología , VIH-1/patogenicidad , Leucocitos Mononucleares/virología , Tropismo Viral/fisiología , Adaptación Fisiológica/fisiología , Separación Celular , Humanos , Macrófagos/virología , Internalización del Virus
3.
Retrovirology ; 9: 9, 2012 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-22284192

RESUMEN

BACKGROUND: The conserved CD4 binding site (CD4bs) on HIV-1 gp120 is a major target for vaccines. It is a priority to determine sites and structures within the CD4bs that are important for inclusion in vaccines. We studied a gp120 pocket penetrated by W100 of the potent CD4bs monoclonal antibody (mab), b12. We compared HIV-1 envelopes and corresponding mutants that carried blocked W100 pockets to evaluate whether other CD4bs mabs target this site. FINDINGS: All CD4bs mabs tested blocked soluble CD4 binding to gp120 consistent with their designation as CD4bs directed antibodies. All CD4bs mabs tested neutralized pseudovirions carrying NL4.3 wild type (wt) envelope. However, only b12 failed to neutralize pseudoviruses carrying mutant envelopes with a blocked W100 pocket. In addition, for CD4bs mabs that neutralized pseudovirions carrying primary envelopes, mutation of the W100 pocket had little or no effect on neutralization sensitivity. CONCLUSIONS: Our data indicate that the b12 W100 pocket on gp120 is infrequently targeted by CD4bs mabs. This site is therefore not a priority for preservation in vaccines aiming to elicit antibodies targeting the CD4bs.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Antígenos CD4/metabolismo , Humanos , Unión Proteica , Receptores del VIH/metabolismo
4.
J Virol ; 84(18): 9608-12, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20610714

RESUMEN

HIV-1 R5 envelopes vary considerably in their capacities to exploit low CD4 levels on macrophages for infection and in their sensitivities to the CD4 binding site (CD4bs) monoclonal antibody (MAb) b12 and the glycan-specific MAb 2G12. Here, we show that nonglycan determinants flanking the CD4 binding loop, which affect exposure of the CD4bs, also modulate 2G12 neutralization. Our data indicate that such residues act via a mechanism that involves shifts in the orientation of proximal glycans, thus modulating the sensitivity of 2G12 neutralization and affecting the overall presentation and structure of the glycan shield.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Polisacáridos/inmunología , Sitios de Unión , Anticuerpos ampliamente neutralizantes , Humanos
5.
Retrovirology ; 5: 5, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18205925

RESUMEN

BACKGROUND: HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. RESULTS: R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542), but with increased resistance to the anti-CD4 monoclonal antibody (mab), Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. CONCLUSION: Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/metabolismo , Inhibidores de Fusión de VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/fisiología , Macrófagos/virología , Internalización del Virus/efectos de los fármacos , Adulto , Anticuerpos Monoclonales/inmunología , Encéfalo/virología , Línea Celular , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Lactante , Concentración 50 Inhibidora , Ganglios Linfáticos/virología , Pruebas de Neutralización
6.
J Neuroimmune Pharmacol ; 2(1): 32-41, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18040824

RESUMEN

Human immunodeficiency virus (HIV)-positive individuals frequently suffer from progressive encephelopathy, which is characterized by sensory neuropathy, sensory myelopathy, and dementia. Our group and others have reported the presence of highly macrophage-tropic R5 variants of HIV-1 in brain tissue of patients with neurological complications. These variants are able to exploit low amounts of CD4 and/or CCR5 for infection and potentially confer an expanded tropism for any cell types that express low CD4 and/or CCR5. In contrast to the brain-derived envelopes, we found that envelopes from lymph node tissue, blood, or semen were predominantly non-macrophage-tropic and required high amounts of CD4 for infection. Nevertheless, where tested, the non-macrophage-tropic envelopes conferred efficient replication in primary CD4(+) T-cell cultures. Determinants of R5 macrophage tropism appear to involve changes in the CD4 binding site, although further unknown determinants are also involved. The variation of R5 envelopes also affects their sensitivity to inhibition by ligands and entry inhibitors that target CD4 and CCR5. In summary, HIV-1 R5 viruses vary extensively in macrophage tropism. In the brain, highly macrophage-tropic variants may represent neurotropic or neurovirulent viruses. In addition, variation in R5 macrophage tropism may also have implications (1) for transmission, depending on what role macrophages or cells that express low CD4 and/or CCR5 play in the establishment of infection in a new host, and (2) for pathogenesis and depletion of CD4(+) T cells (i.e., do highly macrophage-tropic variants confer a broader tropism among CD4(+) T-cell populations late in disease and contribute to their depletion?).


Asunto(s)
Complejo SIDA Demencia/virología , Encéfalo/inmunología , Encéfalo/virología , Variación Genética/inmunología , Macrófagos/inmunología , Macrófagos/virología , Receptores CCR5/genética , Tropismo/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Complejo SIDA Demencia/inmunología , Complejo SIDA Demencia/patología , Animales , Encéfalo/patología , Antígenos CD4/biosíntesis , Antígenos CD4/genética , Humanos , Macrófagos/patología , Especificidad de Órganos/inmunología , Tropismo/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/biosíntesis
7.
J Virol ; 80(13): 6324-32, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16775320

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) R5 isolates that predominantly use CCR5 as a coreceptor are frequently described as macrophage tropic. Here, we compare macrophage tropism conferred by HIV-1 R5 envelopes that were derived directly by PCR from patient tissue. This approach avoids potentially selective culture protocols used in virus isolation. Envelopes were amplified (i) from blood and semen of adult patients and (ii) from plasma of pediatric patients. The phenotypes of these envelopes were compared to those conferred by an extended panel of envelopes derived from brain and lymph node that we reported previously. Our results show that R5 envelopes vary by up to 1,000-fold in their capacity to confer infection of primary macrophages. Highly macrophage-tropic envelopes were predominate in brain but were infrequent in semen, blood, and lymph node samples. We also confirmed that the presence of N283 in the C2 CD4 binding site of gp120 is associated with HIV-1 envelopes from the brain but absent from macrophage-tropic envelopes amplified from blood and semen. Finally, we compared infection of macrophages, CD4(+) T cells, and peripheral blood mononuclear cells (PBMCs) conferred by macrophage-tropic and non-macrophage-tropic envelopes in the context of full-length replication competent viral clones. Non-macrophage-tropic envelopes conferred low-level infection of macrophages yet infected CD4(+) T cells and PBMCs as efficiently as highly macrophage-tropic brain envelopes. The lack of macrophage tropism for the majority of the envelopes amplified from lymph node, blood, and semen is striking and contrasts with the current consensus that R5 primary isolates are generally macrophage tropic. The extensive variation in R5 tropism reported here is likely to have an important impact on pathogenesis and on the capacity of HIV-1 to transmit.


Asunto(s)
Infecciones por VIH/sangre , Infecciones por VIH/transmisión , VIH-1 , Ganglios Linfáticos/virología , Semen/virología , Virión , Adulto , Sustitución de Aminoácidos , Encéfalo/patología , Encéfalo/virología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Femenino , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/genética , Infecciones por VIH/patología , VIH-1/genética , Células HeLa , Humanos , Recién Nacido , Macrófagos/patología , Macrófagos/virología , Masculino , Especificidad de la Especie , Carga Viral , Virión/genética , Cultivo de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA