Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(12): 126601, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802951

RESUMEN

Topological bosonic excitations must, in contrast to their fermionic counterparts, appear at finite energies. This is a key challenge for magnons, as it prevents straightforward excitation and detection of topologically protected magnonic edge states and their use in magnonic devices. In this Letter, we show that in a nonequilibrium state, in which the magnetization is pointing against the external magnetic field, the topologically protected chiral edge states in a magnon Chern insulator can be lowered to zero frequency, making them directly accessible by existing experimental techniques. We discuss the spin-orbit torque required to stabilize this nonequilibrium state, and show explicitly using numerical Landau-Lifshitz-Gilbert simulations that the edge states can be excited with a microwave field. Finally, we consider a propagating spin wave spectroscopy experiment, and demonstrate that the edge states can be directly detected.

2.
Phys Rev Lett ; 127(3): 037202, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328762

RESUMEN

An optical frequency comb consists of a set of discrete and equally spaced frequencies and has found wide applications in the synthesis over a broad range of spectral frequencies of electromagnetic waves and precise optical frequency metrology. Despite the analogies between magnons and photons in many aspects, the analog of an optical frequency comb in magnonic systems has not been reported. Here, we theoretically study the magnon-skyrmion interaction and find that a magnonic frequency comb (MFC) can be generated above a threshold driving amplitude, where the nonlinear scattering process involving three magnons prevails. The mode spacing of the MFC is equal to the breathing-mode frequency of the skyrmion and is thus tunable by either electric or magnetic means. The theoretical prediction is verified by micromagnetic simulations, and the essential physics can be generalized to a large class of magnetic solitons. Our findings open a new pathway to observe frequency comb structures in magnonic devices that may inspire the study of fundamental nonlinear physics in spintronic platforms in the future.

3.
Nano Lett ; 20(12): 8563-8568, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33238096

RESUMEN

Topologically protected magnetic structures provide a robust platform for low power consumption devices for computation and data storage. Examples of these structures are skyrmions, chiral domain walls, and spin spirals. Here, we use scanning electron microscopy with polarization analysis to unveil the presence of chiral counterclockwise Néel spin spirals at the surface of a bulk van der Waals ferromagnet Fe3GeTe2 (FGT) at zero magnetic field. These Néel spin spirals survive up to FGT's Curie temperature of TC = 220 K, with little change in the periodicity p = 300 nm of the spin spiral throughout the studied temperature range. The formation of a spin spiral showing counterclockwise rotation strongly suggests the presence of a positive Dzyaloshinskii-Moriya interaction in FGT, which provides the first steps towards the understanding of the magnetic structure of FGT. Our results additionally pave the way for chiral magnetism in van der Waals materials and their heterostructures.

4.
Phys Rev Lett ; 124(20): 207203, 2020 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-32501071

RESUMEN

Chiral magnetism, wherein there is a preferred sense of rotation of the magnetization, determines the chiral nature of magnetic textures such as skyrmions, domain walls, or spin spirals. Current research focuses on identifying and controlling the interactions that define the magnetic chirality in thin film multilayers. The influence of the interfacial Dzyaloshinskii-Moriya interaction (IDMI) and, recently, the dipolar interactions have been reported. Here, we experimentally demonstrate that an indirect interlayer exchange interaction can be used as an additional tool to effectively manipulate the magnetic chirality. We image the chirality of magnetic domain walls in a coupled bilayer system using scanning electron microscopy with polarization analysis. Upon increasing the interlayer exchange coupling, we induce a transition of the magnetic chirality from clockwise rotating Néel walls to degenerate Bloch-Néel domain walls and we confirm our findings with micromagnetic simulations. In multilayered systems relevant for skyrmion research, a uniform magnetic chirality across the magnetic layers is often desired. Additional simulations show that this can be achieved for reduced IDMI values (up to 30%) when exploiting the interlayer exchange interaction. This work opens up new ways to control and tailor the magnetic chirality by the interlayer exchange interaction.

5.
Phys Rev Lett ; 124(11): 117201, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242721

RESUMEN

We investigate phonon spin transport in an insulating ferromagnet-nonmagnet-ferromagnet heterostructure. We show that the magnetoelastic interaction between the spins and the phonons leads to nonlocal spin transfer between the magnets. This transfer is mediated by a local phonon spin current and accompanied by a phonon spin accumulation. The spin conductance depends nontrivially on the system size, and decays over millimeter length scales for realistic material parameters, far exceeding the decay lengths of magnonic spin currents.

6.
Phys Rev Lett ; 123(15): 157201, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31702306

RESUMEN

The stabilization of chiral magnetic domain walls and skyrmions has been attributed to the actively investigated Dzyaloshinskii-Moriya interaction. Recently, however, predictions were made that suggest dipolar interactions can also stabilize chiral domain walls and skyrmions, but direct experimental evidence has been lacking. Here we show that dipolar interactions can indeed stabilize chiral domain walls by directly imaging the magnetic domain walls using scanning electron microscopy with polarization analysis in archetype Pt/CoB/Ir thin film multilayers. We further demonstrate the competition between the Dzyaloshinskii-Moriya and dipolar interactions by imaging a reversal of the domain wall chirality as a function of the magnetic layer thickness. Finally, we suggest that this competition can be tailored by a Ruderman-Kittel-Kasuya-Yosida interaction. Our work therefore reveals that dipolar interactions play a key role in the stabilization of chiral spin textures. This insight will open up new routes towards balancing interactions for the stabilization of chiral magnetism.

7.
Phys Rev Lett ; 123(16): 167203, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702374

RESUMEN

Electrons and holes residing on the opposing sides of an insulating barrier and experiencing an attractive Coulomb interaction can spontaneously form a coherent state known as an indirect exciton condensate. We study a trilayer system where the barrier is an antiferromagnetic insulator. The electrons and holes here additionally interact via interfacial coupling to the antiferromagnetic magnons. We show that by employing magnetically uncompensated interfaces, we can design the magnon-mediated interaction to be attractive or repulsive by varying the thickness of the antiferromagnetic insulator by a single atomic layer. We derive an analytical expression for the critical temperature T_{c} of the indirect exciton condensation. Within our model, anisotropy is found to be crucial for achieving a finite T_{c}, which increases with the strength of the exchange interaction in the antiferromagnetic bulk. For realistic material parameters, we estimate T_{c} to be around 7 K, the same order of magnitude as the current experimentally achievable exciton condensation where the attraction is solely due to the Coulomb interaction. The magnon-mediated interaction is expected to cooperate with the Coulomb interaction for condensation of indirect excitons, thereby providing a means to significantly increase the exciton condensation temperature range.

8.
Phys Rev Lett ; 122(18): 187701, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144904

RESUMEN

Motivated by the important role of the normalized second-order coherence function, often called g^{(2)}, in the field of quantum optics, we propose a method to determine magnon coherence in solid-state devices. Namely, we show that the cross-correlations of pure spin currents injected by a ferromagnet into two metal leads, normalized by their dc value, replicate the behavior of g^{(2)} when magnons are driven far from equilibrium. We consider two scenarios: driving by ferromagnetic resonance, which leads to the coherent occupation of a single mode, and driving by heating of the magnons, which leads to an excess of incoherent magnons. We find an enhanced normalized cross-correlation in the latter case, thereby demonstrating bunching of nonequilibrium thermal magnons due to their bosonic statistics. Our results contribute to the burgeoning field of quantum magnonics, which seeks to explore and exploit the quantum nature of magnons.

9.
Phys Rev Lett ; 120(19): 197202, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-29799247

RESUMEN

In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.

10.
Phys Rev Lett ; 119(5): 056804, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949746

RESUMEN

We investigate spin transport by thermally excited spin waves in an antiferromagnetic insulator. Starting from a stochastic Landau-Lifshitz-Gilbert phenomenology, we obtain the out-of-equilibrium spin-wave properties. In linear response to spin biasing and a temperature gradient, we compute the spin transport through a normal-metal-antiferromagnet-normal-metal heterostructure. We show that the spin conductance diverges as one approaches the spin-flop transition; this enhancement of the conductance should be readily observable by sweeping the magnetic field across the spin-flop transition. The results from such experiments may, on the one hand, enhance our understanding of spin transport near a phase transition, and on the other be useful for applications that require a large degree of tunability of spin currents. In contrast, the spin Seebeck coefficient does not diverge at the spin-flop transition. Furthermore, the spin Seebeck coefficient is finite even at zero magnetic field, provided that the normal metal contacts break the symmetry between the antiferromagnetic sublattices.

11.
Phys Rev Lett ; 117(20): 207203, 2016 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-27886475

RESUMEN

Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

12.
Phys Rev Lett ; 108(24): 246601, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004301

RESUMEN

We theoretically investigate spin transfer between a system of quasiequilibrated Bose-Einstein-condensed magnons in an insulator in direct contact with a conductor. While charge transfer is prohibited across the interface, spin transport arises from the exchange coupling between insulator and conductor spins. In a normal insulator phase, spin transport is governed solely by the presence of thermal and spin-diffusive gradients; the presence of Bose-Einstein condensation (BEC), meanwhile, gives rise to a temperature-independent condensate spin current. Depending on the thermodynamic bias of the system, spin may flow in either direction across the interface, engendering the possibility of a dynamical phase transition of magnons. We discuss the experimental feasibility of observing a BEC steady state (fomented by a spin Seebeck effect), which is contrasted to the more familiar spin-transfer-induced classical instabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...