Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Fluids Barriers CNS ; 20(1): 15, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882782

RESUMEN

BACKGROUND: Hypertriglyceridemia is closely linked to atherosclerosis related inflammatory processes and blood-brain barrier (BBB) dysfunction. Using apolipoprotein B-100 (APOB-100) transgenic mice, an animal model of chronic hypertriglyceridemia, we analyzed BBB function and morphology in vitro and ex vivo. Our objective was to determine which BBB characteristics are produced mainly by interleukin (IL)-6, an atherosclerosis promoting cytokine, and whether these actions can be antagonized by IL-10, an anti-inflammatory cytokine. METHODS: Brain endothelial and glial cell cultures and brain microvessels were isolated from wild type (WT) and APOB-100 transgenic mice and were treated with IL-6, IL-10 and their combination. First, IL-6 and IL-10 production was measured in WT and APOB-100 microvessels using qPCR. Then functional parameters of endothelial cell cultures were analyzed and immunocytochemistry for key BBB proteins was performed. RESULTS: IL-6 mRNA levels were higher in brain microvessels than in brain parenchyma of APOB-100 transgenic mice. Transendothelial electric resistance and P-glycoprotein activity were lower, and paracellular permeability was higher in cultured APOB-100 brain endothelial cells. These features were sensitive to both IL-6 and IL-10 treatments. A decreased P-glycoprotein immunostaining was measured in transgenic endothelial cells under control conditions and in WT cells after treating them with IL-6. This effect was antagonized by IL-10. Changes in immunostaining for tight junction proteins were observed after IL-6 exposure, which were in part antagonized by IL-10. In glial cell cultures an increase in aquaporin-4 immunolabeling in the transgenic group and an increase in microglia cell density in WT glia cultures was detected after IL-6 treatment, which was antagonized by IL-10. In isolated brain microvessels a decrease in P-glycoprotein immunolabeled area fraction was measured in APOB-100 microvessels under control conditions and in WT microvessels after every cytokine treatment. ZO-1 immunolabeling showed characteristics similar to that of P-glycoprotein. No change was seen in claudin-5 and occludin immunoreactive area fractions in microvessels. A decrease in aquaporin-4 immunoreactivity was measured in WT microvessels treated by IL-6, which was antagonized by IL-10. CONCLUSION: IL-6 produced in microvessels contributes to BBB impairment observed in the APOB-100 mice. We showed that IL-10 partly antagonizes the effects of IL-6 at the BBB.


Asunto(s)
Aterosclerosis , Hipertrigliceridemia , Animales , Ratones , Interleucina-6 , Interleucina-10 , Barrera Hematoencefálica , Apolipoproteína B-100 , Células Endoteliales , Citocinas , Ratones Transgénicos , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Acuaporina 4
2.
Biol Sex Differ ; 13(1): 5, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35101146

RESUMEN

BACKGROUND: Metabolic syndrome (MetS) refers to a cluster of co-existing cardio-metabolic risk factors, including visceral obesity, dyslipidemia, hyperglycemia with insulin resistance, and hypertension. As there is a close link between MetS and cardiovascular diseases, we aimed to investigate the sex-based differences in MetS-associated heart failure (HF) and cardiovascular response to regular exercise training (ET). METHODS: High-fat diet-fed male and female APOB-100 transgenic (HFD/APOB-100, 3 months) mice were used as MetS models, and age- and sex-matched C57BL/6 wild-type mice on standard diet served as healthy controls (SD/WT). Both the SD/WT and HFD/APOB-100 mice were divided into sedentary and ET groups, the latter running on a treadmill (0.9 km/h) for 45 min 5 times per week for 7 months. At month 9, transthoracic echocardiography was performed to monitor cardiac function and morphology. At the termination of the experiment at month 10, blood was collected for serum low-density lipoprotein (LDL)- and high-density lipoprotein (HDL)-cholesterol measurements and homeostatic assessment model for insulin resistance (HOMA-IR) calculation. Cardiomyocyte hypertrophy and fibrosis were assessed by histology. Left ventricular expressions of selected genes associated with metabolism, inflammation, and stress response were investigated by qPCR. RESULTS: Both HFD/APOB-100 males and females developed obesity and hypercholesterolemia; however, only males showed insulin resistance. ET did not change these metabolic parameters. HFD/APOB-100 males showed echocardiographic signs of mild HF with dilated ventricles and thinner walls, whereas females presented the beginning of left ventricular hypertrophy. In response to ET, SD/WT males developed increased left ventricular volumes, whereas females responded with physiologic hypertrophy. Exercise-trained HFD/APOB-100 males presented worsening HF with reduced ejection fraction; however, ET did not change the ejection fraction and reversed the echocardiographic signs of left ventricular hypertrophy in HFD/APOB-100 females. The left ventricular expression of the leptin receptor was higher in females than males in the SD/WT groups. Left ventricular expression levels of stress response-related genes were higher in the exercise-trained HFD/APOB-100 males and exercise-trained SD/WT females than exercise-trained SD/WT males. CONCLUSIONS: HFD/APOB-100 mice showed sex-specific cardiovascular responses to MetS and ET; however, left ventricular gene expressions were similar between the groups except for leptin receptor and several stress response-related genes.


Asunto(s)
Insuficiencia Cardíaca , Resistencia a la Insulina , Síndrome Metabólico , Animales , Apolipoproteína B-100 , Modelos Animales de Enfermedad , Femenino , Hipertrofia Ventricular Izquierda , Masculino , Síndrome Metabólico/complicaciones , Ratones , Ratones Endogámicos C57BL , Receptores de Leptina , Volumen Sistólico
3.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919597

RESUMEN

Inappropriate nutrition and a sedentary lifestyle can lead to obesity, one of the most common risk factors for several chronic diseases. Although regular physical exercise is an efficient approach to improve cardiometabolic health, the exact cellular processes are still not fully understood. We aimed to analyze the morphological, gene expression, and lipidomic patterns in the liver and adipose tissues in response to regular exercise. Healthy (wild type on a normal diet) and hyperlipidemic, high-fat diet-fed (HFD-fed) apolipoprotein B-100 (APOB-100)-overexpressing mice were trained by treadmill running for 7 months. The serum concentrations of triglyceride and tumor necrosis factor α (TNFα), as well as the level of lipid accumulation in the liver, were significantly higher in HFD-fed APOB-100 males compared to females. However, regular exercise almost completely abolished lipid accumulation in the liver of hyperlipidemic animals. The expression level of the thermogenesis marker, uncoupling protein-1 (Ucp1), was significantly higher in the subcutaneous white adipose tissue of healthy females, as well as in the brown adipose tissue of HFD-fed APOB-100 females, compared to males. Lipidomic analyses revealed that hyperlipidemia essentially remodeled the lipidome of brown adipose tissue, affecting both the membrane and storage lipid fractions, which was partially restored by exercise in both sexes. Our results revealed more severe metabolic disturbances in HFD-fed APOB-100 males compared to females. However, exercise efficiently reduced the body weight, serum triglyceride levels, expression of pro-inflammatory factors, and hepatic lipid accumulation in our model.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hiperlipidemias/metabolismo , Hiperlipidemias/fisiopatología , Obesidad/metabolismo , Obesidad/fisiopatología , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Femenino , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos
4.
J Neuroinflammation ; 18(1): 22, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-33423680

RESUMEN

BACKGROUND: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. METHODS: In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. RESULTS: Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. CONCLUSIONS: Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response.


Asunto(s)
Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/metabolismo , Etanol/toxicidad , Proteínas de Choque Térmico/biosíntesis , Mediadores de Inflamación/metabolismo , Chaperonas Moleculares/biosíntesis , Animales , Lesiones Encefálicas/genética , Células Cultivadas , Etanol/administración & dosificación , Expresión Génica , Proteínas de Choque Térmico/genética , Humanos , Inyecciones Subcutáneas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Chaperonas Moleculares/genética
5.
Curr Pharm Des ; 26(13): 1486-1494, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32067608

RESUMEN

Serum lipid levels are closely related to the structure and function of blood vessels. Chronic hyperlipidemia may lead to damage in both the cardio- and the cerebrovascular systems. Vascular dysfunctions, including impairments of the blood-brain barrier, are known to be associated with neurodegenerative diseases. A growing number of evidence suggests that cardiovascular risk factors, such as hyperlipidemia, may increase the likelihood of developing dementia. Due to differences in lipoprotein metabolism, wild-type mice are protected against dietinduced hypercholesterolemia, and their serum lipid profile is different from that observed in humans. Therefore, several transgenic mouse models have been established to study the role of different apolipoproteins and their receptors in lipid metabolism, as well as the complications related to pathological lipoprotein levels. This minireview focused on a transgenic mouse model overexpressing an apolipoprotein, the human ApoB-100. We discussed literature data and current advancements on the understanding of ApoB-100 induced cardio- and cerebrovascular lesions in order to demonstrate the involvement of this type of apolipoprotein in a wide range of pathologies, and a link between hyperlipidemia and neurodegeneration.


Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Animales , Apolipoproteína B-100/genética , Apolipoproteínas B , Humanos , Ratones , Ratones Transgénicos
6.
Front Pharmacol ; 10: 920, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31507418

RESUMEN

The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.

7.
Front Cell Neurosci ; 12: 380, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30410436

RESUMEN

Hypertriglyceridemia is not only a serious risk factor in the development of cardiovascular diseases, but it is linked to neurodegeneration, too. Previously, we generated transgenic mice overexpressing the human APOB-100 protein, a mouse model of human atherosclerosis. In this model we observed high plasma levels of triglycerides, oxidative stress, tau hyperphosphorylation, synaptic dysfunction, cognitive impairment, increased neural apoptosis and neurodegeneration. Neurovascular dysfunction is recognized as a key factor in the development of neurodegenerative diseases, but the cellular and molecular events linking cerebrovascular pathology and neurodegeneration are not fully understood. Our aim was to study cerebrovascular changes in APOB-100 transgenic mice. We described the kinetics of the development of chronic hypertriglyceridemia in the transgenic animals. Increased blood-brain barrier permeability was found in the hippocampus of APOB-100 transgenic mice which was accompanied by structural changes. Using transmission electron microscopy, we detected changes in the brain capillary endothelial tight junction structure and edematous swelling of astrocyte endfeet. In brain microvessels isolated from APOB-100 transgenic animals increased Lox-1, Aqp4, and decreased Meox-2, Mfsd2a, Abcb1a, Lrp2, Glut-1, Nos2, Nos3, Vim, and in transgenic brains reduced Cdh2 and Gfap-σ gene expressions were measured using quantitative real-time PCR. We confirmed the decreased P-glycoprotein (ABCB1) and vimentin expression related to the neurovascular unit by immunostaining in transgenic brain sections using confocal microscopy. We conclude that in chronic hypertriglyceridemic APOB-100 transgenic mice both functional and morphological cerebrovascular pathology can be observed, and this animal model could be a useful tool to study the link between cerebrovascular pathology and neurodegeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...