Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 936: 173347, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763200

RESUMEN

Karst corrosion of carbonate rocks by water with dissolved gases proceeds in most cases along two major scenarios: (i) meteoric water absorbs CO2 from soil and atmosphere, or (ii) ascending water of deep circulation carries with it dissolved endogenous gases, mainly CO2 and H2S. We have observed a peculiar variant where meteoric water absorbs ascending endogenous gases at a natural gas vent on a travertine mound in Slovakia. Carbonate dissolution's extreme effectiveness is demonstrated by mineralization of rainwater ponded at a gas vent, rising to 3.2 g/L of dissolved solids shortly after the rainfall. One liter of water ponded at the vent and mixing with the venting gas, dissolved up to 800 mg of calcium at a rate exceeding 5.8 mg/L·min. Limestone tablets placed at the vent show signs of significant corrosion, at rates up to 126 mm/ka. The rate is comparable to those in coastal karst, where freshwater is mixing with seawater and to those in sulfuric acid speleogenesis (SAS), both the highest hitherto known rates of karst corrosion in carbonates. The geomorphic effects of the process described are depressions on the surface of travertine near the vents of endogenous CO2. This type of corrosion seems to be universal and probably occurs everywhere where endogenous CO2 is exhaled to the surface from carbonate rocks.

2.
Rapid Commun Mass Spectrom ; 38(4): e9680, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38212654

RESUMEN

RATIONALE: The presence of substantial amounts of dissolved salts creates serious difficulties in isotope analyses of water samples using conventional isotope ratio mass spectrometry. Although nowadays laser-based instruments are increasingly used for this purpose, a comprehensive assessment of isotope effects associated with direct analyses of aqueous saline solutions using this technology is lacking. METHODS: Here we report the results of laboratory experiments aimed at quantifying isotope effects associated with direct, δ2 H, δ18 O and δ17 O analyses of single-salt solutions and double-salt mixtures prepared with a water of known isotopic composition. Three single-salt solutions (NaCl, CaCl2 and MgSO4 ) and two double-salt mixtures (NaCl + CaCl2 and NaCl + MgSO4 ) were prepared and investigated for a wide range of molalities. The triple-isotope composition of the prepared solutions was analysed with the aid of a Picarro L2140-i Cavity Ring-Down Spectroscopy analyser. RESULTS: The NaCl and CaCl2 solutions revealed small negative salt effects, independent of molality and comparable with measurement uncertainty. The MgCl2 solution showed the highest salt effects, reaching saturated solution ca. +2.7‰ (2 H), -3.5‰ (18 O) and -1.7‰ (17 O). Salt effects for the double-salt mixtures generally mirrored the effects observed for the single-salt solutions. The observed salt effects are discussed in the context of processes occurring during the injection of the salt solutions into the vaporizer unit of the CRDS analyser. CONCLUSIONS: The presented study has demonstrated feasibility of direct, triple-isotope analyses of aqueous salt solutions using a Picarro L2140-i CRDS analyser for a broad range of salinities up to saturated conditions. Large uncertainties of 17 O-excess determinations for solutions forming hydrated salts preclude the use of this parameter for interpretation purposes.

4.
Isotopes Environ Health Stud ; 57(3): 254-261, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33511877

RESUMEN

The procedure of calibrating in-house water standards suitable for routine analyses of triple-isotope composition of water samples using Picarro L2140-i CRDS analyser is presented and discussed. Such standards are indispensable for achieving and maintaining high quality of isotope analyses of water in terms of their precision and accuracy. A set of seven different water standards consisting of three in-house standards and four secondary standards commercially available was calibrated against VSMOW2/SLAP2 primary reference materials. The calibrated standards cover a wide range of isotopic composition, with δ values ranging from close to zero to the values comparable with SLAP2. The apparent consistency of the calibrated values of δ2H, δ18O and d-excess with corresponding certified values for commercially available USGS47-50 standards and the consistency of the calibrated values of δ17O and Δ17O with its literature values for USGS47-48 standards confirm the high quality of the performed calibration. Moreover, the calibration exercise allowed to obtain δ17O and Δ17O values for USGS49 and USGS50 standards, not reported so far.


Asunto(s)
Isótopos de Oxígeno/análisis , Análisis Espectral/normas , Agua/análisis , Calibración , Deuterio/análisis , Rayos Láser , Análisis Espectral/instrumentación , Análisis Espectral/métodos
5.
Isotopes Environ Health Stud ; 55(3): 290-307, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31037964

RESUMEN

A thorough evaluation of measurement uncertainty together with control of short-term and long-term precision of measurements should be a basis of any successful quality assurance/quality control (QA/QC) strategy aimed at maintaining a high quality of the analytical process. Here we present the results of a comprehensive assessment of the analytical performance of a Picarro L2140-i CRDS laser spectrometer analysing δ2H, δ18O and δ17O in water. The assessment is based on results obtained during 15 months of continuous operation of this instrument (February 2017 to May 2018). The short-term precision of measured and derived quantities was 0.11, 0.036, 0.028, 0.23 ‰ and 11 per meg, for δ2H, δ18O, δ17O, d-excess and Δ17O, respectively, and is comparable to the precision reported by the manufacturer. The long-term precision of the L2140-i, defined as standard uncertainty of the time series of 153 analyses of a laboratory standard conducted throughout 15 months, was roughly two times lower (0.24, 0.053, 0.038, 0.37 ‰ and 21 per meg, for δ2H, δ18O, δ17O, d-excess and Δ17O). In-depth assessment of the measurement uncertainty of a single analysis revealed that assigned uncertainty of the calibration standards is an important component of the uncertainty budget, especially in case of δ2H analysis.


Asunto(s)
Deuterio/análisis , Isótopos de Oxígeno/análisis , Análisis Espectral/métodos , Agua/análisis , Calibración , Rayos Láser , Incertidumbre
6.
Isotopes Environ Health Stud ; 47(4): 415-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22166151

RESUMEN

The issue of natural radioactivity in groundwater is reviewed, with emphasis on those radioisotopes which contribute in a significant way to the overall effective dose received by members of the public due to the intake of drinking water originating from groundwater systems. The term 'natural radioactivity' is used in this context to cover all radioactivity present in the environment, including man-made (anthropogenic) radioactivity. Comprehensive discussion of radiological aspects of the presence of natural radionuclides in groundwater, including an overview of current regulations dealing with radioactivity in drinking water, is provided. The presented data indicate that thorough assessments of the committed doses resulting from the presence of natural radioactivity in groundwater are needed, particularly when such water is envisaged for regular intake by infants. They should be based on a precise determination of radioactivity concentration levels of the whole suite of radionuclides, including characterisation of their temporal variability. Equally important is a realistic assessment of water intake values for specific age groups. Only such an evaluation may provide the basis for possible remedial actions.


Asunto(s)
Agua Subterránea/análisis , Radioisótopos/análisis , Europa (Continente) , Monitoreo de Radiación , Radiactividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA