Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Sci Rep ; 11(1): 4018, 2021 Feb 17.
Article En | MEDLINE | ID: mdl-33597639

The first order reversal curve (FORC) method is a magnetometry based technique used to capture nanoscale magnetic phase separation and interactions with macroscopic measurements using minor hysteresis loop analysis. This makes the FORC technique a powerful tool in the analysis of complex systems which cannot be effectively probed using localized techniques. However, recovering quantitative details about the identified phases which can be compared to traditionally measured metrics remains an enigmatic challenge. We demonstrate a technique to reconstruct phase-resolved magnetic hysteresis loops by selectively integrating the measured FORC distribution. From these minor loops, the traditional metrics-including the coercivity and saturation field, and the remanent and saturation magnetization-can be determined. In order to perform this analysis, special consideration must be paid to the accurate quantitative management of the so-called reversible features. This technique is demonstrated on three representative materials systems, high anisotropy FeCuPt thin-films, Fe nanodots, and SmCo/Fe exchange spring magnet films, and shows excellent agreement with the direct measured major loop, as well as the phase separated loops.

2.
Nanoscale ; 9(3): 1285-1291, 2017 Jan 19.
Article En | MEDLINE | ID: mdl-28054694

Spin Hall nano-oscillators (SHNOs) are an emerging class of pure spin current driven microwave signal generators. Through the fabrication of 20 nm nano-constrictions in Pt/NiFe bilayers, we demonstrate that SHNOs can be scaled down to truly nanoscopic dimensions, with the added benefit of ultra-low operating currents and improved power conversion efficiency. The lateral confinement leads to a strong shape anisotropy field as well as an additional demagnetizing field whose reduction with increasing auto-oscillation amplitude can yield a positive current tunability contrary to the negative tunability commonly observed for localized excitations in extended magnetic layers. Micromagnetic simulations corroborate the experimental findings and suggest that the active magnetodynamic area resides up to 100 nm outside of the nano-constriction.

4.
Nat Commun ; 7: 11209, 2016 Apr 18.
Article En | MEDLINE | ID: mdl-27088301

Static and dynamic magnetic solitons play a critical role in applied nanomagnetism. Magnetic droplets, a type of non-topological dissipative soliton, can be nucleated and sustained in nanocontact spin-torque oscillators with perpendicular magnetic anisotropy free layers. Here, we perform a detailed experimental determination of the full droplet nucleation boundary in the current-field plane for a wide range of nanocontact sizes and demonstrate its excellent agreement with an analytical expression originating from a stability analysis. Our results reconcile recent contradicting reports of the field dependence of the droplet nucleation. Furthermore, our analytical model both highlights the relation between the fixed layer material and the droplet nucleation current magnitude, and provides an accurate method to experimentally determine the spin transfer torque asymmetry of each device.

5.
Nat Commun ; 7: 11050, 2016 Mar 21.
Article En | MEDLINE | ID: mdl-26996674

Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.

6.
Nano Lett ; 15(5): 3204-11, 2015 May 13.
Article En | MEDLINE | ID: mdl-25915688

Plasmon rulers are an emerging concept in which the strong near-field coupling of plasmon nanoantenna elements is employed to obtain structural information at the nanoscale. Here, we combine nanoplasmonics and nanomagnetism to conceptualize a magnetoplasmonic dimer nanoantenna that would be able to report nanoscale distances while optimizing its own spatial orientation. The latter constitutes an active operation in which a dynamically optimized optical response per measured unit length allows for the measurement of small and large nanoscale distances with about 2 orders of magnitude higher precision than current state-of-the-art plasmon rulers. We further propose a concept to optically measure the nanoscale response to the controlled application of force with a magnetic field.

7.
Nano Lett ; 14(12): 7207-14, 2014 Dec 10.
Article En | MEDLINE | ID: mdl-25423352

Light polarization rotators and nonreciprocal optical isolators are essential building blocks in photonics technology. These macroscopic passive devices are commonly based on magneto-optical Faraday and Kerr polarization rotation. Magnetoplasmonics, the combination of magnetism and plasmonics, is a promising route to bring these devices to the nanoscale. We introduce design rules for highly tunable active magnetoplasmonic elements in which we can tailor the amplitude and sign of the Kerr response over a broad spectral range.


Algorithms , Magnetics/instrumentation , Metal Nanoparticles/chemistry , Nanotechnology/instrumentation , Optical Devices , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design/methods , Equipment Failure Analysis , Magnetic Fields , Metal Nanoparticles/ultrastructure
8.
Phys Rev Lett ; 112(4): 047201, 2014 Jan 31.
Article En | MEDLINE | ID: mdl-24580485

Magnetic dissipative droplets are localized, strongly nonlinear dynamical modes excited in nanocontact spin valves with perpendicular magnetic anisotropy. These modes find potential application in nanoscale structures for magnetic storage and computation, but dissipative droplet studies have so far been limited to extended thin films. Here, numerical and asymptotic analyses are used to demonstrate the existence and properties of novel solitons in confined structures. As a nanowire's width is decreased with a nanocontact of fixed size at its center, the observed modes undergo transitions from a fully localized two-dimensional droplet into a two-dimensional droplet edge mode and then a pulsating one-dimensional droplet. These solitons are interpreted as dissipative versions of classical, conservative solitons, allowing for an analytical description of the modes and the mechanisms of bifurcation. The presented results open up new possibilities for the study of low-dimensional solitons and droplet applications in nanostructures.

9.
Sci Rep ; 4: 4204, 2014 Feb 26.
Article En | MEDLINE | ID: mdl-24569632

To develop a full understanding of interactions in nanomagnet arrays is a persistent challenge, critically impacting their technological acceptance. This paper reports the experimental, numerical and analytical investigation of interactions in arrays of Co nanoellipses using the first-order reversal curve (FORC) technique. A mean-field analysis has revealed the physical mechanisms giving rise to all of the observed features: a shift of the non-interacting FORC-ridge at the low-HC end off the local coercivity HC axis; a stretch of the FORC-ridge at the high-HC end without shifting it off the HC axis; and a formation of a tilted edge connected to the ridge at the low-HC end. Changing from flat to Gaussian coercivity distribution produces a negative feature, bends the ridge, and broadens the edge. Finally, nearest neighbor interactions segment the FORC-ridge. These results demonstrate that the FORC approach provides a comprehensive framework to qualitatively and quantitatively decode interactions in nanomagnet arrays.

10.
Phys Rev Lett ; 110(25): 257202, 2013 Jun 21.
Article En | MEDLINE | ID: mdl-23829755

It has been argued that if multiple spin wave modes are competing for the same centrally located energy source, as in a nanocontact spin torque oscillator, that only one mode should survive in the steady state. Here, the experimental conditions necessary for mode coexistence are explored. Mode coexistence is facilitated by the local field asymmetries induced by the spatially inhomogeneous Oersted field, which leads to a physical separation of the modes, and is further promoted by spin wave localization at reduced applied field angles. Finally, both simulation and experiment reveal a low frequency signal consistent with the intermodulation of two coexistent modes.

12.
J Magn Magn Mater ; 321(10): 1368-1371, 2009 May 01.
Article En | MEDLINE | ID: mdl-20336173

Multifunctional core-shell nanocomposites with a magnetic core and a silica shell doped with lanthanide chelate have been prepared by a simple method. First, citric acid-modified magnetite nanoparticles were synthesized by a chemical coprecipitation method. Then the magnetite nanoparticles were coated with silica shells doped with terbium (Tb(3+)) complex by a modified Stöber method based on hydrolyzing and condensation of tetraethyl orthosilicate (TEOS) and a silane precursor. These multifunctional nanocomposites are potentially useful in a variety of biological areas such as bio-imaging, bio-labeling and bioassays because they can be simultaneously manipulated with an external magnetic field and exhibit unique phosphorescence properties.

13.
Nanotechnology ; 18(5): 55102, 2007 Jul.
Article En | MEDLINE | ID: mdl-18974844

Many types of fluorescent nanoparticles have been investigated as alternatives to conventional organic dyes in biochemistry; magnetic beads also have a long history of biological applications. In this work we apply flame spray pyrolysis in order to engineer a novel type of nanoparticle that has both luminescent and magnetic properties. The particles have magnetic cores of iron oxide doped with cobalt and neodymium and luminescent shells of europium-doped gadolinium oxide (Eu:Gd(2)O(3)). Measurements by vibrating sample magnetometry showed an overall paramagnetic response of these composite particles. Luminescence spectroscopy showed spectra typical of the Eu ion in a Gd(2)O(3) host-a narrow emission peak centred near 615 nm. Our synthesis method offers a low-cost, high-rate synthesis route that enables a wide range of biological applications of magnetic/luminescent core/shell particles. Using these particles we demonstrate a novel immunoassay format with internal luminescent calibration for more precise measurements.

...