Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 13(9): 758, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056008

RESUMEN

Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-ß receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-ß receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-ß receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-ß receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Elongasas de Ácidos Grasos/metabolismo , Neoplasias Pulmonares , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Regulación hacia Abajo/genética , Transición Epitelial-Mesenquimal , Femenino , Humanos , Lípidos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Metástasis de la Neoplasia , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
2.
Cell Rep ; 39(11): 110949, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35705045

RESUMEN

Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells.


Asunto(s)
Glándulas Suprarrenales , Macrófagos , Monocitos , Caracteres Sexuales , Glándulas Suprarrenales/metabolismo , Animales , Femenino , Antígenos de Histocompatibilidad Clase II/genética , Recuento de Leucocitos , Macrófagos/metabolismo , Masculino , Ratones
3.
Nat Metab ; 3(10): 1313-1326, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34650273

RESUMEN

Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.


Asunto(s)
Aminación , Glutamina/metabolismo , Fosforilación Oxidativa , Animales , Ratones , Fagocitosis
4.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489438

RESUMEN

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Asunto(s)
Tejido Adiposo Pardo/citología , Monocitos/fisiología , Adiponectina/genética , Tejido Adiposo Pardo/fisiología , Animales , Diferenciación Celular/genética , Recuento de Leucocitos , Macrófagos/citología , Macrófagos/fisiología , Glicoproteínas de Membrana/metabolismo , Ratones Transgénicos , Monocitos/citología , Tomografía de Emisión de Positrones , Receptores CCR2/genética , Receptores CCR2/metabolismo
5.
Mol Aspects Med ; 77: 100922, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33162108

RESUMEN

Macrophages are pivotal in the initiation and development of atherosclerotic cardiovascular diseases. Recent studies have reinforced the importance of mitochondria in metabolic and signaling pathways to maintain macrophage effector functions. In this review, we discuss the past and emerging roles of macrophage mitochondria metabolic diversity in atherosclerosis and the potential avenue as biomarker. Beyond metabolic functions, mitochondria are also a signaling platform integrating epigenetic, redox, efferocytic and apoptotic regulations, which are exquisitely linked to their dynamics. Indeed, mitochondria functions depend on their density and shape perpetually controlled by mitochondria fusion/fission and biogenesis/mitophagy balances. Mitochondria can also communicate with other organelles such as the endoplasmic reticulum through mitochondria-associated membrane (MAM) or be secreted for paracrine actions. All these functions are perturbed in macrophages from mouse or human atherosclerotic plaques. A better understanding and integration of how these metabolic and signaling processes are integrated and dictate macrophage effector functions in atherosclerosis may ultimately help the development of novel therapeutic approaches.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Retículo Endoplásmico , Humanos , Macrófagos/metabolismo , Ratones , Mitocondrias , Placa Aterosclerótica/metabolismo
6.
J Clin Invest ; 130(11): 5858-5874, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32759503

RESUMEN

Mitochondria have emerged as key actors of innate and adaptive immunity. Mitophagy has a pivotal role in cell homeostasis, but its contribution to macrophage functions and host defense remains to be delineated. Here, we showed that lipopolysaccharide (LPS) in combination with IFN-γ inhibited PINK1-dependent mitophagy in macrophages through a STAT1-dependent activation of the inflammatory caspases 1 and 11. In addition, we demonstrated that the inhibition of mitophagy triggered classical macrophage activation in a mitochondrial ROS-dependent manner. In a murine model of polymicrobial infection (cecal ligature and puncture), adoptive transfer of Pink1-deficient bone marrow or pharmacological inhibition of mitophagy promoted macrophage activation, which favored bactericidal clearance and led to a better survival rate. Reciprocally, mitochondrial uncouplers that promote mitophagy reversed LPS/IFN-γ-mediated activation of macrophages and led to immunoparalysis with impaired bacterial clearance and lowered survival. In critically ill patients, we showed that mitophagy was inhibited in blood monocytes of patients with sepsis as compared with nonseptic patients. Overall, this work demonstrates that the inhibition of mitophagy is a physiological mechanism that contributes to the activation of myeloid cells and improves the outcome of sepsis.


Asunto(s)
Bacterias/inmunología , Activación de Macrófagos , Macrófagos Peritoneales/inmunología , Mitofagia/inmunología , Sepsis/inmunología , Animales , Femenino , Humanos , Interferón gamma/inmunología , Lipopolisacáridos/inmunología , Macrófagos Peritoneales/microbiología , Macrófagos Peritoneales/patología , Masculino , Ratones , Proteínas Quinasas/inmunología , Células RAW 264.7 , Sepsis/microbiología , Sepsis/patología
7.
Cell Rep ; 31(7): 107665, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433974

RESUMEN

Low-grade inflammation is constitutive of atherosclerosis, and anti-inflammatory therapy inhibiting interleukin-1ß (IL-1ß) reduces the rate of cardiovascular events. While cholesterol accumulation in atheroma plaque and macrophages is a major driver of the inflammatory process, the role of the LXR cholesterol sensors remains to be clarified. Murine and human macrophages were treated with LXR agonists for 48 h before Toll-like receptor (TLR) stimulation. Unexpectedly, we observe that, among other cytokines, LXR agonists selectively increase IL1B mRNA levels independently of TLR activation. This effect, restricted to human macrophages, is mediated by activation of HIF-1α through LXR. Accordingly, LXR agonists also potentiate other HIF-1α-dependent pathways, such as glycolysis. Treatment of human macrophages with carotid plaque homogenates also leads to induction of IL1B in an LXR-dependent manner. Thus, our work discloses a mechanism by which cholesterol and oxysterols trigger inflammation in atherosclerosis. This suggests perspectives to target IL-1ß production in atherosclerotic patients.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-1beta/biosíntesis , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Animales , Aterosclerosis/metabolismo , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Receptores X del Hígado/agonistas , Receptores X del Hígado/antagonistas & inhibidores , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
Cell Death Dis ; 10(7): 485, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217433

RESUMEN

Limitation of 5-fluorouracil (5-FU) anticancer efficacy is due to IL-1ß secretion by myeloid-derived suppressor cells (MDSC), according to a previous pre-clinical report. Release of mature IL-1ß is a consequence of 5-FU-mediated NLRP3 activation and subsequent caspase-1 activity in MDSC. IL-1ß sustains tumor growth recovery in 5-FU-treated mice. Docosahexaenoic acid (DHA) belongs to omega-3 fatty acid family and harbors both anticancer and anti-inflammatory properties, which could improve 5-FU chemotherapy. Here, we demonstrate that DHA inhibits 5-FU-induced IL-1ß secretion and caspase-1 activity in a MDSC cell line (MSC-2). Accordingly, we showed that DHA-enriched diet reduces circulating IL-1ß concentration and tumor recurrence in 5-FU-treated tumor-bearing mice. Treatment with 5-FU led to JNK activation through ROS production in MDSC. JNK inhibitor SP600125 as well as DHA-mediated JNK inactivation decreased IL-1ß secretion. The repression of 5-FU-induced caspase-1 activity by DHA supplementation is partially due to ß-arrestin-2-dependent inhibition of NLRP3 inflammasome activity but was independent of JNK pathway. Interestingly, we showed that DHA, through ß-arrestin-2-mediated inhibition of JNK pathway, reduces V5-tagged mature IL-1ß release induced by 5-FU, in MDSC stably overexpressing a V5-tagged mature IL-1ß form. Finally, we found a negative correlation between DHA content in plasma and the induction of caspase-1 activity in HLA-DR- CD33+ CD15+ MDSC of patients treated with 5-FU-based chemotherapy, strongly suggesting that our data are clinical relevant. Together, these data provide new insights on the regulation of IL-1ß secretion by DHA and on its potential benefit in 5-FU-based chemotherapy.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Fluorouracilo/farmacología , Inflamasomas/efectos de los fármacos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Caspasa 1/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Fluorouracilo/uso terapéutico , Humanos , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Arrestina beta 2/metabolismo
9.
J Gerontol A Biol Sci Med Sci ; 73(8): 1045-1049, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29415184

RESUMEN

Aging is often associated with elevated levels of low grade inflammation supposed to drive age-associated diseases. Here, we conducted a cross-sectional study on 58 healthy volunteers, aged from 19 to 81, to investigate the relationship between age and the expression of three inflammasome component genes (Nlrp3, Asc, Casp1), the up-stream transcription factor NFkB, and the pro-inflammatory cytokine Il-1ß in leukocytes. We also assessed C-reactive protein (CRP) and IL-1ß in plasma, as additional inflammatory markers. We did not find any support to the hypothesis that inflammasone activation increases with age. Expression of Asc, Casp1, NFkB, and Il-1ß did not vary with age, body mass index (BMI), and CRP levels. In addition, expression did not differ between males and females or between smokers and non-smokers. A notable exception was the expression of Nlrp3 which varied non-linearly with age. Specifically, Nlrp3 expression strongly declined during aging, in subjects who were between 50 and 81 years old. CRP was higher in women and increased as a function of age-corrected BMI, while only four subjects showed detectable amount of IL-1ß in plasma. Further work on larger cohorts with a longitudinal monitoring should be conducted to corroborate the finding that healthy aging is associated with a decrease in inflammasome activation.


Asunto(s)
Envejecimiento Saludable/metabolismo , Leucocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Proteína C-Reactiva/análisis , Estudios Transversales , Femenino , Expresión Génica/fisiología , Humanos , Interleucina-1beta/sangre , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Biomed Pharmacother ; 96: 1022-1035, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29221725

RESUMEN

In the present study, we have investigated the effects of polyphenol-rich infusions from carob leaves and OFI-cladodes on inflammation associated with obesity and dextran sulfate sodium (DSS)-induced ulcerative colitis in Swiss mice. In vitro studies revealed that aqueous extracts of carob leaves and OFI-cladodes exhibited anti-inflammatory properties marked by the inhibition of IL-6, TNF-α and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells concomitant with NF-κß nucleus translocation inhibition. For in vivo investigations, Swiss male mice were subjected to control or high fat diet (HFD). At the 8th week after the start of study, animals received or not 1% infusion of either carob leaves or OFI-cladode for 4 weeks and were subjected to 2% DSS administration in drinking water over last 7 days. After sacrifice, pro-inflammatory cytokines levels in plasma and their mRNA expression in different organs were determined. Results showed that carob leaf and OFI-cladode infusions reduced inflammation severity associated with HFD-induced obesity and DSS-induced acute colitis indicated by decrease in pro-inflammatory cytokines expression (as such TNF-α, IL1b and IL-6) in colon, adipose tissue and spleen. In addition, plasma levels of IL-6 and TNF-α were also curtailed in response to infusions treatment. Thus, carob leaf and OFI-cladode infusions prevented intestinal permeability through the restoration of tight junction proteins (Zo1, occludins) and immune homeostasis. Hence, the anti-inflammatory effect of carob leaves and OFI-cladodes could be attributed to their polyphenols which might alleviate inflammation severity associated with obesity and colitis.


Asunto(s)
Colitis/tratamiento farmacológico , Galactanos/administración & dosificación , Mediadores de Inflamación/antagonistas & inhibidores , Mananos/administración & dosificación , Obesidad/tratamiento farmacológico , Opuntia , Gomas de Plantas/administración & dosificación , Polifenoles/administración & dosificación , Animales , Línea Celular , Colitis/inducido químicamente , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Dieta Alta en Grasa/efectos adversos , Relación Dosis-Respuesta a Droga , Fabaceae , Galactanos/aislamiento & purificación , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Mananos/aislamiento & purificación , Ratones , Obesidad/etiología , Obesidad/metabolismo , Gomas de Plantas/aislamiento & purificación , Hojas de la Planta , Polifenoles/aislamiento & purificación
12.
PLoS One ; 12(2): e0170823, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28212423

RESUMEN

Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Neoplasias del Colon/patología , Mitocondrias/efectos de los fármacos , Olea/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Desnudos , Mitocondrias/patología , Fenol/química , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...