Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Proc Natl Acad Sci U S A ; 120(34): e2209735120, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37579162

The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (ProxyOH) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. ProxyOH is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations. ProxyOH comprises only eight variables that are generally observed by routine ground- or satellite-based instruments. ProxyOH scales linearly with in situ [OH] spatial variations along the ATom flight tracks (median r2 = 0.90, interquartile range = 0.80 to 0.94 across 2-km altitude by 20° latitudinal regions). We deconstruct spatial variations in ProxyOH as a first-order approximation of the sensitivity of OH variations to individual terms. Two terms modulate within-region ProxyOH variations-water vapor (H2O) and, to a lesser extent, nitric oxide (NO). This implies that a limited set of observations could offer an avenue for observation-based mapping of OH spatial variations over much of the remote marine troposphere. Both H2O and NO are expected to change with climate, while NO also varies strongly with human activities. We also illustrate the utility of ProxyOH as a process-based approach for evaluating intermodel differences in remote marine tropospheric OH.

2.
Environ Int ; 159: 107023, 2022 01 15.
Article En | MEDLINE | ID: mdl-34920275

Air pollution poses a serious threat to children's respiratory health around the world. Satellite remote-sensing technology and air quality models can provide pollution data on a global scale, necessary for risk communication efforts in regions without ground-based monitoring networks. Several large centers, including NASA, produce global pollution forecasts that may be used alongside air quality indices to communicate local, daily risk information to the public. Here we present a health-based, globally applicable air quality index developed specifically to reflect the respiratory health risks among children exposed to elevated outdoor air pollution. Additive, excess-risk air quality indices were developed using 51 different coefficients derived from time-series health studies evaluating the impacts of ambient fine particulate matter, nitrogen dioxide, and ozone on children's respiratory morbidity outcomes. A total of four indices were created which varied based on whether or not the underlying studies controlled for co-pollutants and in the adjustment of excess risks of individual pollutants. Combined with historical estimates of air pollution provided globally at a 25 × 25 km2 spatial resolution from the NASA's Goddard Earth Observing System composition forecast (GEOS-CF) model, each of these indices were examined in a global sample of 664 small and 140 large cities for study year 2017. Adjusted indices presented the most normal distributions of locally-scaled index values, which has been shown to improve associations with health risks, while indices based on coefficients controlling for co-pollutants had little effect on index performance. We provide the steps and resources need to apply our final adjusted index at the local level using freely-available forecasting data from the GEOS-CF model, which can provide risk communication information for cities around the world to better inform individual behavior modification to best protect children's respiratory health.


Air Pollutants , Air Pollution , Ozone , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Child , Humans , Nitrogen Dioxide/analysis , Ozone/analysis , Particulate Matter/analysis , Particulate Matter/toxicity
3.
Annu Rev Biomed Data Sci ; 4: 417-447, 2021 07 20.
Article En | MEDLINE | ID: mdl-34465183

Data from satellite instruments provide estimates of gas and particle levels relevant to human health, even pollutants invisible to the human eye. However, the successful interpretation of satellite data requires an understanding of how satellites relate to other data sources, as well as factors affecting their application to health challenges. Drawing from the expertise and experience of the 2016-2020 NASA HAQAST (Health and Air Quality Applied Sciences Team), we present a review of satellite data for air quality and health applications. We include a discussion of satellite data for epidemiological studies and health impact assessments, as well as the use of satellite data to evaluate air quality trends, support air quality regulation, characterize smoke from wildfires, and quantify emission sources. The primary advantage of satellite data compared to in situ measurements, e.g., from air quality monitoring stations, is their spatial coverage. Satellite data can reveal where pollution levels are highest around the world, how levels have changed over daily to decadal periods, and where pollutants are transported from urban to global scales. To date, air quality and health applications have primarily utilized satellite observations and satellite-derived products relevant to near-surface particulate matter <2.5 µm in diameter (PM2.5) and nitrogen dioxide (NO2). Health and air quality communities have grown increasingly engaged in the use of satellite data, and this trend is expected to continue. From health researchers to air quality managers, and from global applications to community impacts, satellite data are transforming the way air pollution exposure is evaluated.


Air Pollutants , Air Pollution , Air Pollutants/adverse effects , Air Pollution/adverse effects , Humans , Nitrogen Dioxide/analysis , Particulate Matter/adverse effects
4.
Geohealth ; 5(9): e2021GH000451, 2021 Sep.
Article En | MEDLINE | ID: mdl-34585034

The combination of air quality (AQ) data from satellites and low-cost sensor systems, along with output from AQ models, have the potential to augment high-quality, regulatory-grade data in countries with in situ monitoring networks and provide much needed AQ information in countries without them, including Low and Moderate Income Countries (LMICs). We demonstrate the potential of free and publicly available USA National Aeronautics and Space Administration (NASA) resources, which include capacity building activities, satellite data, and global AQ forecasts, to provide cost-effective, and reliable AQ information to health and AQ professionals around the world. We provide illustrative case studies that highlight how global AQ forecasts along with satellite data may be used to characterize AQ on urban to regional scales, including to quantify pollution concentrations, identify pollution sources, and track the long-range transport of pollution. We also provide recommendations to data product developers to facilitate and broaden usage of NASA resources by health and AQ stakeholders.

5.
J Adv Model Earth Syst ; 13(4): e2020MS002413, 2021 Apr.
Article En | MEDLINE | ID: mdl-34221240

The Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-resolution (0.25°) global constituent prediction system from NASA's Global Modeling and Assimilation Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to supplement NASA's broad range of space-based and in-situ observations. GEOS-CF expands on the GEOS weather and aerosol modeling system by introducing the GEOS-Chem chemistry module to provide hindcasts and 5-days forecasts of atmospheric constituents including ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5). The chemistry module integrated in GEOS-CF is identical to the offline GEOS-Chem model and readily benefits from the innovations provided by the GEOS-Chem community. Evaluation of GEOS-CF against satellite, ozonesonde and surface observations for years 2018-2019 show realistic simulated concentrations of O3, NO2, and CO, with normalized mean biases of -0.1 to 0.3, normalized root mean square errors between 0.1-0.4, and correlations between 0.3-0.8. Comparisons against surface observations highlight the successful representation of air pollutants in many regions of the world and during all seasons, yet also highlight current limitations, such as a global high bias in SO2 and an overprediction of summertime O3 over the Southeast United States. GEOS-CF v1.0 generally overestimates aerosols by 20%-50% due to known issues in GEOS-Chem v12.0.1 that have been addressed in later versions. The 5-days forecasts have skill scores comparable to the 1-day hindcast. Model skills can be improved significantly by applying a bias-correction to the surface model output using a machine-learning approach.

6.
Geohealth ; 4(7): e2020GH000270, 2020 Jul.
Article En | MEDLINE | ID: mdl-32642628

The 2018 NASA Health and Air Quality Applied Science Team (HAQAST) "Indicators" Tiger Team collaboration between NASA-supported scientists and civil society stakeholders aimed to develop satellite-derived global air pollution and climate indicators. This Commentary shares our experience and lessons learned. Together, the team developed methods to track wildfires, dust storms, pollen counts, urban green space, nitrogen dioxide concentrations and asthma burdens, tropospheric ozone concentrations, and urban particulate matter mortality. Participatory knowledge production can lead to more actionable information but requires time, flexibility, and continuous engagement. Ground measurements are still needed for ground truthing, and sustained collaboration over time remains a challenge.

7.
J Air Waste Manag Assoc ; 70(2): 193-205, 2020 02.
Article En | MEDLINE | ID: mdl-31769734

Using the Community Multiscale Air Quality (CMAQ) model and the Benefits Mapping and Analysis Program - Community Edition (BenMAP-CE) tool, we estimate the benefits of anthropogenic emission reductions between 2002 and 2011 in the Eastern United States (US) with respect to surface ozone concentrations and ozone-related health and economic impacts, during a month of extreme heat, July 2011. Based on CMAQ simulations using emissions appropriate for 2002 and 2011, we estimate that emission reductions since 2002 likely prevented 10- 15 ozone exceedance days (using the 2011 maximum 8-hr average ozone standard of 75 ppbv) throughout the Ohio River Valley and 5- 10 ozone exceedance days throughout the Washington, DC - Baltimore, MD metropolitan area during this extremely hot month. CMAQ results were fed into the BenMAP-CE tool to determine the health and health-related economic benefits of anthropogenic emission reductions between 2002 and 2011. We estimate that the concomitant health benefits from the ozone reductions were significant for this anomalous month: 160-800 mortalities (95% confidence interval (CI): 70-1,010) were avoided in July 2011 in the Eastern U.S, saving an estimated $1.3-$6.6 billion (CI: $174 million-$15.5 billion). Additionally, we estimate that emission reductions resulted in 950 (CI: 90-2,350) less hospital admissions from respiratory symptoms, 370 (CI: 180-580) less hospital admissions for pneumonia, 570 (CI: 0-1650) less Emergency Room (ER) visits from asthma symptoms, 922,020 (CI: 469,960-1,370,050) less minor restricted activity days (MRADs), and 430,240 (CI: -280,350-963,190) less symptoms of asthma exacerbation during July 2011.Implications: We estimate the benefits of air pollution emission reductions on surface ozone concentrations and ozone-related impacts on human health and the economy between 2002 and 2011 during an extremely hot month, July 2011, in the eastern United States (US) using the CMAQ and BenMAP-CE models. Results suggest that, during July 2011, emission reductions prevented 10-15 ozone exceedance days in the Ohio River Valley and 5-10 ozone exceedance days in the Mid Atlantic; saved 160-800 lives in the Eastern US, saving $1.3 - $6.5 billion; and resulted in 950 less hospital admissions for respiratory symptoms, 370 less hospital admissions for pneumonia, 570 less Emergency Room visits for asthma symptoms, 922,020 less minor restricted activity days, and 430,240 less symptoms of asthma exacerbation.


Air Pollutants/analysis , Air Pollution/prevention & control , Emergency Service, Hospital/statistics & numerical data , Extreme Heat , Hospitalization/statistics & numerical data , Ozone/analysis , Respiratory Tract Diseases/epidemiology , Baltimore , Humans , Ohio , Respiratory Tract Diseases/prevention & control , United States/epidemiology
8.
Ann Am Thorac Soc ; 16(10): 1207-1214, 2019 10.
Article En | MEDLINE | ID: mdl-31573344

Air quality data from satellites and low-cost sensor systems, together with output from air quality models, have the potential to augment high-quality, regulatory-grade data in countries with in situ monitoring networks and provide much-needed air quality information in countries without them. Each of these technologies has strengths and limitations that need to be considered when integrating them to develop a robust and diverse global air quality monitoring network. To address these issues, the American Thoracic Society, the U.S. Environmental Protection Agency, the National Aeronautics and Space Administration, and the National Institute of Environmental Health Sciences convened a workshop in May 2017 to bring together global experts from across multiple disciplines and agencies to discuss current and near-term capabilities to monitor global air pollution. The participants focused on four topics: 1) current and near-term capabilities in air pollution monitoring, 2) data assimilation from multiple technology platforms, 3) critical issues for air pollution monitoring in regions without a regulatory-quality stationary monitoring network, and 4) risk communication and health messaging. Recommendations for research and improved use were identified during the workshop, including a recognition that the integration of data across monitoring technology groups is critical to maximizing the effectiveness (e.g., data accuracy, as well as spatial and temporal coverage) of these monitoring technologies. Taken together, these recommendations will advance the development of a global air quality monitoring network that takes advantage of emerging technologies to ensure the availability of free, accessible, and reliable air pollution data and forecasts to health professionals, as well as to all global citizens.


Air Pollution/analysis , Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Satellite Imagery/instrumentation , Air Pollutants/analysis , Humans , Particulate Matter/analysis , Patient Care , Societies, Medical , United States
9.
Sci Total Environ ; 695: 133805, 2019 Dec 10.
Article En | MEDLINE | ID: mdl-31419680

Fossil-fuel CO2 emissions and their trends in eight U.S. megacities during 2006-2017 are inferred by combining satellite-derived NOX emissions with bottom-up city-specific NOX-to-CO2 emission ratios. A statistical model is fit to a collection NO2 plumes observed from the Ozone Monitoring Instrument (OMI), and is used to calculate top-down NOX emissions. Decreases in OMI-derived NOX emissions are observed across the eight cities from 2006 to 2017 (-17% in Miami to -58% in Los Angeles), and are generally consistent with long-term trends of bottom-up inventories (-25% in Miami to -49% in Los Angeles), but there are some interannual discrepancies. City-specific NOX-to-CO2 emission ratios, used to calculate inferred CO2, are estimated through annual bottom-up inventories of NOX and CO2 emissions disaggregated to 1 × 1 km2 resolution. Over the study period, NOX-to-CO2 emission ratios have decreased by ~40% nationwide (-24% to -51% for our studied cities), which is attributed to a faster reduction in NOX when compared to CO2 due to policy regulations and fuel type shifts. Combining top-down NOX emissions and bottom-up NOX-to-CO2 emission ratios, annual fossil-fuel CO2 emissions are derived. Inferred OMI-based top-down CO2 emissions trends vary between +7% in Dallas to -31% in Phoenix. For 2017, we report annual fossil-fuel CO2 emissions to be: Los Angeles 113 ±â€¯49 Tg/yr; New York City 144 ±â€¯62 Tg/yr; and Chicago 55 ±â€¯24 Tg/yr. A study in the Los Angeles area, using independent methods, reported a 2013-2016 average CO2 emissions rate of 104 Tg/yr and 120 Tg/yr, which suggests that the CO2 emissions from our method are in good agreement with other studies' top-down estimates. We anticipate future remote sensing instruments - with better spatial and temporal resolution - will better constrain the NOX-to-CO2 ratio and reduce the uncertainty in our method.

10.
Remote Sens Earth Syst Sci ; 2(1): 18-38, 2019 Feb 11.
Article En | MEDLINE | ID: mdl-33005873

Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries.

11.
Environ Health Perspect ; 126(10): 107004, 2018 10.
Article En | MEDLINE | ID: mdl-30392403

BACKGROUND: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. OBJECTIVES: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter ([Formula: see text]), ozone, and nitrogen dioxide ([Formula: see text]) concentrations. METHODS: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. RESULTS: We estimated that 9­23 million and 5­10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and [Formula: see text], respectively, representing 8­20% and 4­9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for [Formula: see text] and 73% of ozone and [Formula: see text] impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and [Formula: see text] (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. CONCLUSIONS: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP3766.


Air Pollution/adverse effects , Asthma/epidemiology , Nitrogen Dioxide/adverse effects , Ozone/adverse effects , Particulate Matter/adverse effects , Emergency Service, Hospital/statistics & numerical data , Environmental Exposure/adverse effects , Humans , Incidence , Ozone/chemistry , Particle Size , Risk Factors
12.
J Adv Model Earth Syst ; 9(8): 3019-3044, 2017 12.
Article En | MEDLINE | ID: mdl-29497478

NASA's Goddard Earth Observing System (GEOS) Earth System Model (ESM) is a modular, general circulation model (GCM), and data assimilation system (DAS) that is used to simulate and study the coupled dynamics, physics, chemistry, and biology of our planet. GEOS is developed by the Global Modeling and Assimilation Office (GMAO) at NASA Goddard Space Flight Center. It generates near-real-time analyzed data products, reanalyses, and weather and seasonal forecasts to support research targeted to understanding interactions among Earth System processes. For chemistry, our efforts are focused on ozone and its influence on the state of the atmosphere and oceans, and on trace gas data assimilation and global forecasting at mesoscale discretization. Several chemistry and aerosol modules are coupled to the GCM, which enables GEOS to address topics pertinent to NASA's Earth Science Mission. This paper describes the atmospheric chemistry components of GEOS and provides an overview of its Earth System Modeling Framework (ESMF)-based software infrastructure, which promotes a rich spectrum of feedbacks that influence circulation and climate, and impact human and ecosystem health. We detail how GEOS allows model users to select chemical mechanisms and emission scenarios at run time, establish the extent to which the aerosol and chemical components communicate, and decide whether either or both influence the radiative transfer calculations. A variety of resolutions facilitates research on spatial and temporal scales relevant to problems ranging from hourly changes in air quality to trace gas trends in a changing climate. Samples of recent GEOS chemistry applications are provided.

13.
J Geophys Res Atmos ; 122(19): 10-461, 2017 Oct 16.
Article En | MEDLINE | ID: mdl-29682438

Determining effective strategies for mitigating surface ozone (O3) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO2 vertical profiles. We compare four combinations of two OMI HCHO and NO2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O3 air quality more now than it would have a decade ago.

14.
Atmos Chem Phys ; 17(13): 8429-8452, 2017.
Article En | MEDLINE | ID: mdl-32457810

We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618hPa) O3-CO correlations determined by the measurements from Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (fvGCM with sea surface temperature for 1995, GEOS4-DAS for 2005, and MERRA for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological ozone profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that three simulations show significantly different global and regional distributions of O3 and CO concentrations, all simulations show similar patterns of O3-CO correlations on a global scale. These patterns are consistent with those derived from TES observations, except in the tropical easterly biomass burning outflow regions. Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various emissions drive global O3-CO correlation patterns, we examine the sensitivity of GMI/MERRA model-calculated O3 and CO concentrations and their correlations to emission types (fossil fuel, biomass burning, biogenic, and lightning NOx emissions). Fossil fuel and biomass burning emissions are mainly responsible for the strong positive O3-CO correlations over continental outflow regions in both hemispheres. Biogenic emissions have a relatively smaller impact on O3-CO correlations than other emissions, but are largely responsible for the negative correlations over the tropical eastern Pacific, reflecting the fact that O3 is consumed and CO generated during the atmospheric oxidation process of isoprene under low NOx conditions. We find that lightning NOx emissions degrade both positive correlations at mid-/high- latitudes and negative correlations in the tropics because ozone production downwind of lightning NOx emissions is not directly related to the emission and transport of CO. Our study concludes that O3-CO correlations may be used effectively to constrain the sources of regional tropospheric O3 in global 3-D models, especially for those regions where convective transport of pollution plays an important role.

15.
J Geophys Res Atmos ; Volume 121(Iss 7): 3687-3706, 2016 Apr 14.
Article En | MEDLINE | ID: mdl-32021738

Aircraft observations and ozonesonde profiles collected on July 14 and 27, 2011, during the Maryland month-long DISCOVER-AQ campaign, indicate the presence of stratospheric air just above the planetary boundary layer (PBL). This raises the question of whether summer stratospheric intrusions (SIs) elevate surface ozone levels and to what degree they influence background ozone levels and contribute to ozone production. We used idealized stratospheric air tracers, along with observations, to determine the frequency and extent of SIs in Maryland during July 2011. On 4 of 14 flight days, SIs were detected in layers that the aircraft encountered above the PBL from the coincidence of enhanced ozone, moderate CO, and low moisture. Satellite observations of lower tropospheric humidity confirmed the occurrence of synoptic scale influence of SIs as do simulations with the GEOS-5 Atmospheric General Circulation Model. The evolution of GEOS-5 stratospheric air tracers agree with the timing and location of observed stratospheric influence and indicate that more than 50% of air in SI layers above the PBL had resided in the stratosphere within the previous 14 days. Despite having a strong influence in the lower free troposphere, these events did not significantly affect surface ozone, which remained low on intrusion days. The model indicates similar frequencies of stratospheric influence during all summers from 2009-2013. GEOS-5 results suggest that, over Maryland, the strong inversion capping the summer PBL limits downward mixing of stratospheric air during much of the day, helping to preserve low surface ozone associated with frontal passages that precede SIs.

16.
Environ Sci Technol ; 43(17): 6482-7, 2009 Sep 01.
Article En | MEDLINE | ID: mdl-19764205

Ozone exposure is associated with negative health impacts, including premature mortality. Observations and modeling studies demonstrate that emissions from one continent influence ozone air quality over other continents. We estimate the premature mortalities avoided from surface ozone decreases obtained via combined 20% reductions of anthropogenic nitrogen oxide, nonmethane volatile organic compound, and carbon monoxide emissions in North America (NA), EastAsia (EA), South Asia (SA), and Europe (EU). We use estimates of ozone responses to these emission changes from several atmospheric chemical transportmodels combined with a health impactfunction. Foreign emission reductions contribute approximately 30%, 30%, 20%, and >50% of the mortalities avoided by reducing precursor emissions in all regions together in NA, EA, SA and EU, respectively. Reducing emissions in NA and EU avoids more mortalities outside the source region than within, owing in part to larger populations in foreign regions. Lowering the global methane abundance by 20% reduces mortality mostin SA,followed by EU, EA, and NA. For some source-receptor pairs, there is greater uncertainty in our estimated avoided mortalities associated with the modeled ozone responses to emission changes than with the health impact function parameters.


Air Pollutants/toxicity , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Mortality/trends , Ozone/toxicity , Air Pollutants/analysis , Asia/epidemiology , Computer Simulation , Europe/epidemiology , Heart Diseases/mortality , Humans , Lung Diseases/mortality , Models, Theoretical , North America/epidemiology , Ozone/analysis , Population Density , Seasons
...