Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
1.
Epilepsia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990082

RESUMEN

Delineation of seizure onset regions using intracranial electroencephalography (icEEG) is vital in the surgical workup of drug-resistant epilepsy cases. However, it is unknown whether the complete resection of these regions is necessary for seizure freedom, or whether postsurgical seizure recurrence can be attributed to the incomplete removal of seizure onset regions. To address this gap, we retrospectively analyzed icEEG recordings from 63 subjects, identifying seizure onset regions visually and algorithmically. We assessed onset region resection and correlated this with postsurgical seizure control. The majority of subjects had more than half of their onset regions resected (82.46% and 80.65% of subjects using visual and algorithmic methods, respectively). There was no association between the proportion of the seizure onset zone (SOZ) that was subsequently resected and better surgical outcomes (area under the receiver operating characteristic curve [AUC] < .7). Investigating the spatial extent of onset regions, we found no substantial evidence of an association with postsurgical seizure control (all AUC < .7). Although seizure onset regions are typically resected completely or in large part, incomplete resection is not associated with worse postsurgical outcomes. We conclude that postsurgical seizure recurrence cannot be attributed to an incomplete resection of the icEEG SOZ alone. Other network mechanisms beyond icEEG seizure onset likely contribute.

2.
Epilepsia ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990127

RESUMEN

OBJECTIVE: Anterior temporal lobe resection (ATLR) effectively controls seizures in medically refractory temporal lobe epilepsy but risks significant episodic memory decline. Beyond 1 year postoperatively, the influence of preoperative clinical factors on episodic memory and long-term network plasticity remain underexplored. Ten years post-ATLR, we aimed to determine biomarkers of successful memory network reorganization and establish presurgical features' lasting impact on memory function. METHODS: Twenty-five ATLR patients (12 left-sided) and 10 healthy controls underwent a memory-encoding functional magnetic resonance imaging paradigm alongside neuropsychometry 10 years postsurgery. Generalized psychophysiological interaction analyses modeled network functional connectivity of words/faces remembered, seeding from the medial temporal lobes (MTLs). Differences in successful memory connectivity were assessed between controls and left/right ATLR. Multivariate regressions and mixed-effect models probed preoperative phenotypes' effects on long-term memory outcomes. RESULTS: Ten years post-ATLR, lower baseline functioning (verbal and performance intelligence quotient) and a focal memory impairment preoperatively predicted worse long-term memory outcomes. Poorer verbal memory was significantly associated with longer epilepsy duration and earlier onset age. Relative to controls, successful word and face encoding involved increased functional connectivity from both or remnant MTL seeds and contralesional parahippocampus/hippocampus after left/right ATLR. Irrespective of surgical laterality, successful memory encoding correlated with increased MTL-seeded connectivity to frontal (bilateral insula, right anterior cingulate), right parahippocampal, and bilateral fusiform gyri. Ten years postsurgery, better memory performance was correlated with contralateral frontal plasticity, which was disrupted with longer epilepsy duration. SIGNIFICANCE: Our findings underscore the enduring nature of functional network reorganizations to provide long-term cognitive support. Ten years post-ATLR, successful memory formation featured stronger connections near resected areas and contralateral regions. Preoperative network disruption possibly influenced effectiveness of postoperative plasticity. These findings are crucial for enhancing long-term memory prediction and strategies for lasting memory rehabilitation.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39043568

RESUMEN

BACKGROUND: Juvenile myoclonic epilepsy (JME) is associated with cortical thinning of the motor areas. The relative contribution of antiseizure medication to cortical thickness is unknown. We aimed to investigate how valproate influences the cortical morphology of JME. METHODS: In this cross-sectional study, individuals with JME with and without valproate, with temporal lobe epilepsy (TLE) with valproate and controls were selected through propensity score matching. Participants underwent T1-weighted brain imaging and vertex-wise calculation of cortical thickness. RESULTS: We matched 36 individuals with JME on valproate with 36 individuals with JME without valproate, 36 controls and 19 individuals with TLE on valproate. JME on valproate showed thinning of the precentral gyri (left and right, p<0.001) compared with controls and thinning of the left precentral gyrus when compared with JME not on valproate (p<0.01) or to TLE on valproate (p<0.001). Valproate dose correlated negatively with the thickness of the precentral gyri, postcentral gyri and superior frontal gyrus in JME (left and right p<0.0001), but not in TLE. CONCLUSIONS: Valproate was associated with JME-specific and dose-dependent thinning of the cortical motor regions. This suggests that valproate is a key modulator of cortical morphology in JME, an effect that may underlie its high efficacy in this syndrome.

4.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39004756

RESUMEN

In the human brain, a multiple-demand (MD) network plays a key role in cognitive control, with core components in lateral frontal, dorsomedial frontal and lateral parietal cortex, and multivariate activity patterns that discriminate the contents of many cognitive activities. In prefrontal cortex of the behaving monkey, different cognitive operations are associated with very different patterns of neural activity, while details of a particular stimulus are encoded as small variations on these basic patterns (Sigala et al, 2008). Here, using the advanced fMRI methods of the Human Connectome Project and their 360-region cortical parcellation, we searched for a similar result in MD activation patterns. In each parcel, we compared multivertex patterns for every combination of three tasks (working memory, task-switching, and stop-signal) and two stimulus classes (faces and buildings). Though both task and stimulus category were discriminated in every cortical parcel, the strength of discrimination varied strongly across parcels. The different cognitive operations of the three tasks were strongly discriminated in MD regions. Stimulus categories, in contrast, were most strongly discriminated in a large region of primary and higher visual cortex, and intriguingly, in both parietal and frontal lobe regions adjacent to core MD regions. In the monkey, frontal neurons show a strong pattern of nonlinear mixed selectivity, with activity reflecting specific conjunctions of task events. In our data, however, there was limited evidence for mixed selectivity; throughout the brain, discriminations of task and stimulus combined largely linearly, with a small nonlinear component. In MD regions, human fMRI data recapitulate some but not all aspects of electrophysiological data from nonhuman primates.


Asunto(s)
Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Humanos , Masculino , Adulto , Femenino , Memoria a Corto Plazo/fisiología , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Conectoma/métodos , Estimulación Luminosa/métodos , Mapeo Encefálico/métodos , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Cognición/fisiología
5.
ArXiv ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38883234

RESUMEN

Normative models of brain structure estimate the effects of covariates such as age and sex using large samples of healthy controls. These models can then be applied to smaller clinical cohorts to distinguish disease effects from other covariates. However, these advanced statistical modelling approaches can be difficult to access, and processing large healthy cohorts is computationally demanding. Thus, accessible platforms with pre-trained normative models are needed. We present such a platform for brain morphology analysis as an open-source web application https://cnnplab.shinyapps.io/normativemodelshiny/, with six key features: (i) user-friendly web interface, (ii) individual and group outputs, (iii) multi-site analysis, (iv) regional and whole-brain analysis, (v) integration with existing tools, and (vi) featuring multiple morphology metrics. Using a diverse sample of 3,276 healthy controls across 21 sites, we pre-trained normative models on various metrics. We validated the models with a small clinical sample of individuals with bipolar disorder, showing outputs that aligned closely with existing literature only after applying our normative modelling. Further validation with a cohort of temporal lobe epilepsy showed agreement with previous group-level findings and individual-level seizure lateralisation. Finally, with the ability to investigate multiple morphology measures in the same framework, we found that biological covariates are better explained in specific morphology measures, and for clinical applications, only some measures are sensitive to the disease process. Our platform offers a comprehensive framework to analyse brain morphology in clinical and research settings. Validations confirm the superiority of normative models and the advantage of investigating a range of brain morphology metrics together.

6.
Seizure ; 119: 44-51, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776617

RESUMEN

PURPOSE: P-glycoprotein (P-gp) has been hypothesized to be involved in drug-resistance of epilepsy by actively extruding antiseizure medications (ASMs) from the brain. The P-gp inhibitor tariquidar (TQD) has been shown to effectively inhibit P-gp at the human blood-brain barrier, improving brain entry of several ASMs. A potential strategy to overcome drug-resistance is the co-administration of P-gp inhibitors such as TQD to ASMs. Here we present data on the tolerability of single-dose TQD as a potential add-on medication to ASMs. METHODS: We performed a multi-centre cohort study including drug-resistant epilepsy patients and healthy controls from the United Kingdom and Austria. TQD was administered intravenously at five different doses (2 mg/kg or 3 mg/kg of TQD were given to drug-resistant epilepsy patients and healthy controls, higher doses of TQD at 4 mg/kg, 6 mg/kg and 8 mg/kg as well as a prolonged infusion aiming at a dose of 6 mg/kg were only given to healthy controls). Adverse events were recorded and graded using the Common Terminology Criteria (CTCAE) scale. Additionally, TQD plasma concentration levels were measured and compared between drug-resistant patients and healthy controls. RESULTS: In total, 108 participants received TQD once at variable doses and it was overall well tolerated. At doses of 2 or 3 mg/kg TQD, only two of the 19 drug-resistant epilepsy patients and a third of the healthy controls (n = 14/42) reported adverse events probably related to TQD. The majority of those adverse events (96 %) were reported as mild. One drug-resistant epilepsy patient reported adverse events 24-hours after TQD administration possibly related to TQD-induced increased ASMs levels in the brain. CONCLUSIONS: TQD is an effective and well tolerated P-gp inhibitor as a single dose and could potentially be used intermittently in conjunction with ASMs to improve efficacy. This promising strategy to overcome drug-resistance in epilepsy should be investigated further in clinical randomised controlled trials.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Anticonvulsivantes , Epilepsia Refractaria , Humanos , Epilepsia Refractaria/tratamiento farmacológico , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/efectos adversos , Masculino , Femenino , Adulto , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Persona de Mediana Edad , Adulto Joven , Quimioterapia Combinada , Adolescente , Estudios de Cohortes , Quinolinas
7.
J Neurosci Methods ; 408: 110180, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795977

RESUMEN

BACKGROUND: Accurate identification of abnormal electroencephalographic (EEG) activity is pivotal for diagnosing and treating epilepsy. Recent studies indicate that decomposing brain activity into periodic (oscillatory) and aperiodic (trend across all frequencies) components can illuminate the drivers of spectral activity changes. NEW METHODS: We analysed intracranial EEG (iEEG) data from 234 subjects, creating a normative map. This map was compared to a cohort of 63 patients with refractory focal epilepsy under consideration for neurosurgery. The normative map was computed using three approaches: (i) relative complete band power, (ii) relative band power with the aperiodic component removed, and (iii) the aperiodic exponent. Abnormalities were calculated for each approach in the patient cohort. We evaluated the spatial profiles, assessed their ability to localize abnormalities, and replicated the findings using magnetoencephalography (MEG). RESULTS: Normative maps of relative complete band power and relative periodic band power exhibited similar spatial profiles, while the aperiodic normative map revealed higher exponent values in the temporal lobe. Abnormalities estimated through complete band power effectively distinguished between good and bad outcome patients. Combining periodic and aperiodic abnormalities enhanced performance, like the complete band power approach. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS: Sparing cerebral tissue with abnormalities in both periodic and aperiodic activity may result in poor surgical outcomes. Both periodic and aperiodic components do not carry sufficient information in isolation. The relative complete band power solution proved to be the most reliable method for this purpose. Future studies could investigate how cerebral location or pathology influences periodic or aperiodic abnormalities.


Asunto(s)
Encéfalo , Electrocorticografía , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Masculino , Femenino , Adulto , Electrocorticografía/métodos , Adulto Joven , Encéfalo/fisiopatología , Mapeo Encefálico/métodos , Persona de Mediana Edad , Adolescente , Procesamiento de Señales Asistido por Computador , Epilepsia Refractaria/fisiopatología , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/cirugía , Epilepsias Parciales/fisiopatología , Epilepsias Parciales/diagnóstico , Epilepsias Parciales/cirugía , Epilepsia/fisiopatología , Epilepsia/diagnóstico , Estudios de Cohortes , Electroencefalografía/métodos , Ondas Encefálicas/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-38749674

RESUMEN

BACKGROUND: In addition to other stroke-related deficits, the risk of seizures may impact driving ability after stroke. METHODS: We analysed data from a multicentre international cohort, including 4452 adults with acute ischaemic stroke and no prior seizures. We calculated the Chance of Occurrence of Seizure in the next Year (COSY) according to the SeLECT2.0 prognostic model. We considered COSY<20% safe for private and <2% for professional driving, aligning with commonly used cut-offs. RESULTS: Seizure risks in the next year were mainly influenced by the baseline risk-stratified according to the SeLECT2.0 score and, to a lesser extent, by the poststroke seizure-free interval (SFI). Those without acute symptomatic seizures (SeLECT2.0 0-6 points) had low COSY (0.7%-11%) immediately after stroke, not requiring an SFI. In stroke survivors with acute symptomatic seizures (SeLECT2.0 3-13 points), COSY after a 3-month SFI ranged from 2% to 92%, showing substantial interindividual variability. Stroke survivors with acute symptomatic status epilepticus (SeLECT2.0 7-13 points) had the highest risk (14%-92%). CONCLUSIONS: Personalised prognostic models, such as SeLECT2.0, may offer better guidance for poststroke driving decisions than generic SFIs. Our findings provide practical tools, including a smartphone-based or web-based application, to assess seizure risks and determine appropriate SFIs for safe driving.

9.
Pract Neurol ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821880

RESUMEN

The risk-benefit ratio of epilepsy surgery needs careful consideration, is different for each individual and requires a careful, informed dialogue between the person concerned and their medical advisers. We illustrate this process with Virginia, who has had refractory focal epilepsy from age 1 year and a left hemiparesis. At the age of 45 years, we discussed the possibility of epilepsy surgery and went through non-invasive investigations with structural and functional MRI, tractography, scalp video-EEG telemetry, neuropsychological and neuropsychiatric evaluations. This was followed by a decision to carry out intracranial EEG to define the area of seizure onset and its relation to an area of focal cortical dysplasia, eloquent cortex and tracts. We agreed to carry out a focal resection in the knowledge that this would result in a loss of left-hand function. One year later, Virginia is seizure-free on reduced medication. We describe the steps in the process with Virginia's views.

10.
Trends Cogn Sci ; 28(7): 614-627, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38580528

RESUMEN

Working memory (WM) is a fundamental aspect of cognition. WM maintenance is classically thought to rely on stable patterns of neural activities. However, recent evidence shows that neural population activities during WM maintenance undergo dynamic variations before settling into a stable pattern. Although this has been difficult to explain theoretically, neural network models optimized for WM typically also exhibit such dynamics. Here, we examine stable versus dynamic coding in neural data, classical models, and task-optimized networks. We review principled mathematical reasons for why classical models do not, while task-optimized models naturally do exhibit dynamic coding. We suggest an update to our understanding of WM maintenance, in which dynamic coding is a fundamental computational feature rather than an epiphenomenon.


Asunto(s)
Memoria a Corto Plazo , Modelos Neurológicos , Memoria a Corto Plazo/fisiología , Humanos , Encéfalo/fisiología , Redes Neurales de la Computación , Animales
11.
JACC Clin Electrophysiol ; 10(6): 1037-1049, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639701

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) isolated from human heart-derived cells have shown promise in suppressing inflammation and fibroblast proliferation. However, their precise benefits in atrial fibrillation (AF) prevention and the role of their antifibrotic/anti-inflammatory properties remain unclear. OBJECTIVES: The purpose of this study was to conduct a head-to-head comparison of antiarrhythmic strategies to prevent postoperative AF using a rat model of sterile pericarditis. Specifically, we aimed to assess the efficacy of amiodarone (a classic antiarrhythmic drug), colchicine (an anti-inflammatory agent), and EVs derived from human heart-derived cells, which possess anti-inflammatory and antifibrotic properties, on AF induction, inflammation, and fibrosis progression. METHODS: Heart-derived cells were cultured from human atrial appendages under serum-free xenogen-free conditions. Middle-aged Sprague Dawley rats were randomized into different groups, including sham operation, sterile pericarditis with amiodarone treatment, sterile pericarditis with colchicine treatment (2 dose levels), and sterile pericarditis with intra-atrial injection of EVs or vehicle. Invasive electrophysiological testing was performed 3 days after surgery before sacrifice. RESULTS: Sterile pericarditis increased the likelihood of inducing AF. Colchicine and EVs exhibited anti-inflammatory effects, but only EV treatment significantly reduced AF probability, whereas colchicine showed a positive trend without statistical significance. EVs and high-dose colchicine reduced atrial fibrosis by 46% ± 2% and 26% ± 2%, respectively. Amiodarone prevented AF induction but had no effect on inflammation or fibrosis. CONCLUSIONS: In this study, both amiodarone and EVs prevented AF, whereas treatment with colchicine was ineffective. The additional anti-inflammatory and antifibrotic effects of EVs suggest their potential as a comprehensive therapeutic approach for AF prevention, surpassing the effects of amiodarone or colchicine.


Asunto(s)
Amiodarona , Antiarrítmicos , Fibrilación Atrial , Colchicina , Fibrosis , Ratas Sprague-Dawley , Fibrilación Atrial/tratamiento farmacológico , Colchicina/farmacología , Colchicina/uso terapéutico , Amiodarona/farmacología , Amiodarona/uso terapéutico , Animales , Ratas , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Humanos , Masculino , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/patología , Inflamación/tratamiento farmacológico , Complicaciones Posoperatorias/prevención & control , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Pericarditis/tratamiento farmacológico , Vesículas Extracelulares/efectos de los fármacos , Modelos Animales de Enfermedad , Células Cultivadas
12.
J Neurol ; 271(7): 4158-4167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38583105

RESUMEN

OBJECTIVE: The aim of this study was to explore the relation of language functional MRI (fMRI)-guided tractography with postsurgical naming decline in people with temporal lobe epilepsy (TLE). METHODS: Twenty patients with unilateral TLE (9 left) were studied with auditory and picture naming functional MRI tasks. Activation maxima in the left posterobasal temporal lobe were used as seed regions for whole-brain fibre tractography. Clinical naming performance was assessed preoperatively, 4 months, and 12 months following temporal lobe resection. Volumes of white matter language tracts in both hemispheres as well as tract volume laterality indices were explored as moderators of postoperative naming decline using Pearson correlations and multiple linear regression with other clinical variables. RESULTS: Larger volumes of white matter language tracts derived from auditory and picture naming maxima in the hemisphere of subsequent surgery as well as stronger lateralization of picture naming tract volumes to the side of surgery correlated with greater language decline, which was independent of fMRI lateralization status. Multiple regression for picture naming tract volumes was associated with a significant decline of naming function with 100% sensitivity and 93% specificity at both short-term and long-term follow-up. INTERPRETATION: Naming fMRI-guided white matter language tract volumes relate to postoperative naming decline after temporal lobe resection in people with TLE. This can assist stratification of surgical outcome and minimize risk of postoperative language deficits in TLE.


Asunto(s)
Epilepsia del Lóbulo Temporal , Imagen por Resonancia Magnética , Lóbulo Temporal , Sustancia Blanca , Humanos , Masculino , Femenino , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/cirugía , Adulto , Epilepsia del Lóbulo Temporal/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/fisiopatología , Persona de Mediana Edad , Lóbulo Temporal/cirugía , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiopatología , Imagen de Difusión Tensora , Adulto Joven , Trastornos del Lenguaje/etiología , Trastornos del Lenguaje/diagnóstico por imagen , Trastornos del Lenguaje/fisiopatología , Lateralidad Funcional/fisiología , Complicaciones Posoperatorias/diagnóstico por imagen , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/fisiopatología , Lenguaje , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/cirugía
13.
Neuron ; 112(5): 692-693, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38452737

RESUMEN

With recordings from temporal, parietal, and frontal regions of the behaving monkey brain, accompanied by a powerful method for optogenetic silencing of the frontal region, Mendoza-Halliday et al. compare network functions for working memory and visual selective attention.


Asunto(s)
Encéfalo , Cognición , Memoria a Corto Plazo , Lóbulo Frontal , Atención , Mapeo Encefálico , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal
14.
Epilepsia ; 65(4): 1072-1091, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38411286

RESUMEN

OBJECTIVE: The intricate neuroanatomical structure of the cerebellum is of longstanding interest in epilepsy, but has been poorly characterized within the current corticocentric models of this disease. We quantified cross-sectional regional cerebellar lobule volumes using structural magnetic resonance imaging in 1602 adults with epilepsy and 1022 healthy controls across 22 sites from the global ENIGMA-Epilepsy working group. METHODS: A state-of-the-art deep learning-based approach was employed that parcellates the cerebellum into 28 neuroanatomical subregions. Linear mixed models compared total and regional cerebellar volume in (1) all epilepsies, (2) temporal lobe epilepsy with hippocampal sclerosis (TLE-HS), (3) nonlesional temporal lobe epilepsy, (4) genetic generalized epilepsy, and (5) extratemporal focal epilepsy (ETLE). Relationships were examined for cerebellar volume versus age at seizure onset, duration of epilepsy, phenytoin treatment, and cerebral cortical thickness. RESULTS: Across all epilepsies, reduced total cerebellar volume was observed (d = .42). Maximum volume loss was observed in the corpus medullare (dmax = .49) and posterior lobe gray matter regions, including bilateral lobules VIIB (dmax = .47), crus I/II (dmax = .39), VIIIA (dmax = .45), and VIIIB (dmax = .40). Earlier age at seizure onset ( η ρ max 2 = .05) and longer epilepsy duration ( η ρ max 2 = .06) correlated with reduced volume in these regions. Findings were most pronounced in TLE-HS and ETLE, with distinct neuroanatomical profiles observed in the posterior lobe. Phenytoin treatment was associated with reduced posterior lobe volume. Cerebellum volume correlated with cerebral cortical thinning more strongly in the epilepsy cohort than in controls. SIGNIFICANCE: We provide robust evidence of deep cerebellar and posterior lobe subregional gray matter volume loss in patients with chronic epilepsy. Volume loss was maximal for posterior subregions implicated in nonmotor functions, relative to motor regions of both the anterior and posterior lobe. Associations between cerebral and cerebellar changes, and variability of neuroanatomical profiles across epilepsy syndromes argue for more precise incorporation of cerebellar subregional damage into neurobiological models of epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Síndromes Epilépticos , Adulto , Humanos , Epilepsia del Lóbulo Temporal/complicaciones , Fenitoína , Estudios Transversales , Síndromes Epilépticos/complicaciones , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Convulsiones/complicaciones , Imagen por Resonancia Magnética/métodos , Atrofia/patología
15.
Cortex ; 173: 1-15, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38354669

RESUMEN

The extent to which tumour-infiltrated brain tissue contributes to cognitive function remains unclear. We tested the hypothesis that cortical tissue infiltrated by diffuse gliomas participates in large-scale cognitive circuits using a unique combination of intracranial electrocorticography (ECoG) and resting-state functional magnetic resonance (fMRI) imaging in four patients. We also assessed the relationship between functional connectivity with tumour-infiltrated tissue and long-term cognitive outcomes in a larger, overlapping cohort of 17 patients. We observed significant task-related high gamma (70-250 Hz) power modulations in tumour-infiltrated cortex in response to increased cognitive effort (i.e., switch counting compared to simple counting), implying preserved functionality of neoplastic tissue for complex tasks probing executive function. We found that tumour locations corresponding to task-responsive electrodes exhibited functional connectivity patterns that significantly co-localised with canonical brain networks implicated in executive function. Specifically, we discovered that tumour-infiltrated cortex with larger task-related high gamma power modulations tended to be more functionally connected to the dorsal attention network (DAN). Finally, we demonstrated that tumour-DAN connectivity is evident across a larger cohort of patients with gliomas and that it relates to long-term postsurgical outcomes in goal-directed attention. Overall, this study contributes convergent fMRI-ECoG evidence that tumour-infiltrated cortex participates in large-scale neurocognitive circuits that support executive function in health. These findings underscore the potential clinical utility of mapping large-scale connectivity of tumour-infiltrated tissue in the care of patients with diffuse gliomas.


Asunto(s)
Encéfalo , Glioma , Humanos , Encéfalo/fisiología , Función Ejecutiva/fisiología , Cognición/fisiología , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Glioma/diagnóstico por imagen , Vías Nerviosas/fisiología
16.
J Immunol ; 212(5): 813-824, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38224204

RESUMEN

The MHC class I molecule H-2Dk conveys resistance to acute murine CMV infection in both C57L (H-2Dk transgenic) and MA/My mice. M.H2k/b mice are on an MA/My background aside from a C57L-derived region spanning the MHC (Cmv5s), which diminishes this resistance and causes significant spleen histopathology. To hone in on the effector elements within the Cmv5s interval, we generated several Cmv5-recombinant congenic mouse strains and screened them in vivo, allowing us to narrow the phenotype-associated interval >6-fold and segment the genetic mechanism to at least two independent loci within the MHC region. In addition, we sought to further characterize the Cmv5s-associated phenotypes in their temporal appearance and potential direct relationship to viral load. To this end, we found that Cmv5s histopathology and NK cell activation could not be fully mirrored in the MA/My mice with increased viral dose, and that marginal zone destruction was the first apparent Cmv5s phenotype, being reliably quantified as early as 2 d postinfection in the M.H2k/b mice, prior to divergence in viral load, weight loss, or NK cell phenotype. Finally, we further dissect NK cell involvement, finding no intrinsic differences in NK cell function, despite increased upregulation of activation markers and checkpoint receptors. In conclusion, these data dissect the genetic and immunologic underpinnings of Cmv5 and reveal a model in which polymorphism within the MHC region of the genome leads to the development of tissue damage and corrupts protective NK cell immunity during acute viral infection.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Ratones , Animales , Antígenos de Histocompatibilidad Clase I/genética , Células Asesinas Naturales , Tejido Linfoide , Ratones Endogámicos C57BL
17.
Health Place ; 85: 103178, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38262260

RESUMEN

Outdoor play in the home yard is an important source of physical activity for many preschoolers. This study investigated if home yard size and vegetation are related to preschooler outdoor play time. High-resolution remotely sensed data were used to distinguish between types of vegetation coverage in the home yard. Shrub and tree cover, and yard size, were positively associated with outdoor play. Following stratification by socio-economic status (SES - parent education), only tree cover was positively associated with preschooler outdoor play in low SES households. All types of vegetation cover were positively associated with preschooler outdoor play in higher SES households. This study highlights the importance of larger yard sizes and higher levels of vegetation for facilitating outdoor play in preschoolers.


Asunto(s)
Ejercicio Físico , Composición Familiar , Humanos , Clase Social
18.
Theranostics ; 14(2): 608-621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169629

RESUMEN

Rationale: Extracellular vesicles (EVs) from human explant-derived cells injected directly into the atria wall muscle at the time of open chest surgery reduce atrial fibrosis, atrial inflammation, and atrial fibrillation (AF) in a rat model of sterile pericarditis. Albeit a promising solution to prevent postoperative AF, the mechanism(s) underlying this effect are unknown and it is not clear if this benefit is dependent on EV dose. Methods: To determine the dose-efficacy relationship of EVs from human explant-derived cells in a rat model of sterile pericarditis. Increasing doses of EVs (106, 107, 108 or 109) or vehicle control were injected into the atria of middle-age male Sprague-Dawley rats at the time of talc application. A sham control group was included to demonstrate background inducibility. Three days after surgery, all rats underwent invasive electrophysiological testing prior to sacrifice. Results: Pericarditis increased the likelihood of inducing AF (p<0.05 vs. sham). All doses decreased the probability of inducing AF with maximal effects seen after treatment with the highest dose (109, p<0.05 vs. vehicle). Pericarditis increased atrial fibrosis while EV treatment limited the effect of pericarditis on atrial fibrosis with maximal effects seen after treatment with 108 or 109 EVs. Increasing EV dose was associated with progressive decreases in pro-inflammatory cytokine content, inflammatory cell infiltration, and oxidative stress. EVs decreased NLRP3 (NACHT, LRR, and PYD domains-containing protein-3) inflammasome activation though a direct effect on resident atrial fibroblasts and macrophages. This suppressive effect was exclusive to EVs produced by heart-derived cells as application of EVs from bone marrow or umbilical cords did not alter NLRP3 activity. Conclusions: Intramyocardial injection of incremental doses of EVs at the time of open chest surgery led to progressive reductions in atrial fibrosis and inflammatory markers. These effects combined to render atria resistant to the pro-arrhythmic effects of pericarditis which is mechanistically related to suppression of the NLRP3 inflammasome.


Asunto(s)
Fibrilación Atrial , Exosomas , Pericarditis , Masculino , Ratas , Humanos , Animales , Fibrilación Atrial/prevención & control , Fibrilación Atrial/tratamiento farmacológico , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas Sprague-Dawley , Fibrosis
19.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290094

RESUMEN

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Estudios de Cohortes , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética , Estudios Retrospectivos , Convulsiones , Resultado del Tratamiento
20.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38244562

RESUMEN

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Asunto(s)
Conectoma , Función Ejecutiva , Humanos , Función Ejecutiva/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Núcleo Caudado , Atención/fisiología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA