Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 36(4): 245-255, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36947723

RESUMEN

Microscopy has served as a fundamental tool for insight and discovery in plant-microbe interactions for centuries. From classical light and electron microscopy to corresponding specialized methods for sample preparation and cellular contrasting agents, these approaches have become routine components in the toolkit of plant and microbiology scientists alike to visualize, probe and understand the nature of host-microbe relationships. Over the last three decades, three-dimensional perspectives led by the development of electron tomography, and especially, confocal techniques continue to provide remarkable clarity and spatial detail of tissue and cellular phenomena. Confocal and electron microscopy provide novel revelations that are now commonplace in medium and large institutions. However, many other cutting-edge technologies and sample preparation workflows are relatively unexploited yet offer tremendous potential for unprecedented advancement in our understanding of the inner workings of pathogenic, beneficial, and symbiotic plant-microbe interactions. Here, we highlight key applications, benefits, and challenges of contemporary advanced imaging platforms for plant-microbe systems with special emphasis on several recently developed approaches, such as light-sheet, single molecule, super-resolution, and adaptive optics microscopy, as well as ambient and cryo-volume electron microscopy, X-ray microscopy, and cryo-electron tomography. Furthermore, the potential for complementary sample preparation methodologies, such as optical clearing, expansion microscopy, and multiplex imaging, will be reviewed. Our ultimate goal is to stimulate awareness of these powerful cutting-edge technologies and facilitate their appropriate application and adoption to solve important and unresolved biological questions in the field. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Microscopía por Crioelectrón , Interacciones Microbiota-Huesped , Plantas , Microscopía por Crioelectrón/métodos , Interacciones Microbiota-Huesped/fisiología , Plantas/microbiología
2.
Plant Physiol ; 192(1): 222-239, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36756804

RESUMEN

Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.


Asunto(s)
Muerte Celular , Eragrostis , Grano Comestible/genética , Eragrostis/genética , Semillas/genética
3.
Methods Mol Biol ; 2539: 119-132, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35895201

RESUMEN

Phenotyping specific plant traits is difficult when the samples to be measured are architecturally complex. Inflorescence and root system traits are of great biological interest, but these structures present unique phenotyping challenges due to their often complicated and three-dimensional (3D) forms. We describe how a large industrial scale X-ray tomography (XRT) instrument can be used to scan architecturally complex plant structures for the goal of rapid and accurate measurement of traits that are otherwise cumbersome or not possible to capture by other means. The combination of a large imaging cabinet that can accommodate a wide range of sample size geometries and a variable microfocus reflection X-ray source allows noninvasive X-ray imaging and 3D volume generation of diverse sample types. Specific sample fixturing (mounting) and scanning conditions are presented. These techniques can be moderate to high throughput and still provide unprecedented levels of accuracy and information content in the 3D volume data they generate.


Asunto(s)
Inflorescencia , Tomografía Computarizada por Rayos X , Fenotipo , Plantas , Rayos X
4.
Plant Physiol ; 188(2): 831-845, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618094

RESUMEN

Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.


Asunto(s)
Imagenología Tridimensional/estadística & datos numéricos , Microscopía Electrónica de Rastreo/instrumentación , Células Vegetales/ultraestructura , Plantas/ultraestructura , Rayos X
5.
Plant Physiol ; 188(2): 703-712, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34726737

RESUMEN

Plant cells communicate information for the regulation of development and responses to external stresses. A key form of this communication is transcriptional regulation, accomplished via complex gene networks operating both locally and systemically. To fully understand how genes are regulated across plant tissues and organs, high resolution, multi-dimensional spatial transcriptional data must be acquired and placed within a cellular and organismal context. Spatial transcriptomics (ST) typically provides a two-dimensional spatial analysis of gene expression of tissue sections that can be stacked to render three-dimensional data. For example, X-ray and light-sheet microscopy provide sub-micron scale volumetric imaging of cellular morphology of tissues, organs, or potentially entire organisms. Linking these technologies could substantially advance transcriptomics in plant biology and other fields. Here, we review advances in ST and 3D microscopy approaches and describe how these technologies could be combined to provide high resolution, spatially organized plant tissue transcript mapping.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Fenómenos Fisiológicos de las Plantas/genética , Plantas/genética , Transducción de Señal/genética , Análisis Espacial , Transcriptoma , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de la Célula Individual
6.
J Exp Bot ; 70(21): 6261-6276, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31504758

RESUMEN

Inflorescence architecture provides the scaffold on which flowers and fruits develop, and consequently is a primary trait under investigation in many crop systems. Yet the challenge remains to analyse these complex 3D branching structures with appropriate tools. High information content datasets are required to represent the actual structure and facilitate full analysis of both the geometric and the topological features relevant to phenotypic variation in order to clarify evolutionary and developmental inflorescence patterns. We combined advanced imaging (X-ray tomography) and computational approaches (topological and geometric data analysis and structural simulations) to comprehensively characterize grapevine inflorescence architecture (the rachis and all branches without berries) among 10 wild Vitis species. Clustering and correlation analyses revealed unexpected relationships, for example pedicel branch angles were largely independent of other traits. We identified multivariate traits that typified species, which allowed us to classify species with 78.3% accuracy, versus 10% by chance. Twelve traits had strong signals across phylogenetic clades, providing insight into the evolution of inflorescence architecture. We provide an advanced framework to quantify 3D inflorescence and other branched plant structures that can be used to tease apart subtle, heritable features for a better understanding of genetic and environmental effects on plant phenotypes.


Asunto(s)
Imagenología Tridimensional , Inflorescencia/anatomía & histología , Análisis por Conglomerados , Análisis Discriminante , Frutas/anatomía & histología , Análisis Multivariante , Filogenia , Vitis , Rayos X
7.
Plant Cell ; 31(8): 1708-1722, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31123089

RESUMEN

Understanding how an organism's phenotypic traits are conditioned by genetic and environmental variation is a central goal of biology. Root systems are one of the most important but poorly understood aspects of plants, largely due to the three-dimensional (3D), dynamic, and multiscale phenotyping challenge they pose. A critical gap in our knowledge is how root systems build in complexity from a single primary root to a network of thousands of roots that collectively compete for ephemeral, heterogeneous soil resources. We used time-lapse 3D imaging and mathematical modeling to assess root system architectures (RSAs) of two maize (Zea mays) inbred genotypes and their hybrid as they grew in complexity from a few to many roots. Genetically driven differences in root branching zone size and lateral branching densities along a single root, combined with differences in peak growth rate and the relative allocation of carbon resources to new versus existing roots, manifest as sharply distinct global RSAs over time. The 3D imaging of mature field-grown root crowns showed that several genetic differences in seedling architectures could persist throughout development and across environments. This approach connects individual and system-wide scales of root growth dynamics, which could eventually be used to predict genetic variation for complex RSAs and their functions.


Asunto(s)
Imagenología Tridimensional/métodos , Raíces de Plantas/anatomía & histología , Zea mays/anatomía & histología , Modelos Teóricos , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo
8.
Sci Rep ; 6: 30542, 2016 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-27464714

RESUMEN

RNA interference (RNAi) is a promising new technology for corn rootworm control. This paper presents the discovery of new gene targets - dvssj1 and dvssj2, in western corn rootworm (WCR). Dvssj1 and dvssj2 are orthologs of the Drosophila genes snakeskin (ssk) and mesh, respectively. These genes encode membrane proteins associated with smooth septate junctions (SSJ) which are required for intestinal barrier function. Based on bioinformatics analysis, dvssj1 appears to be an arthropod-specific gene. Diet based insect feeding assays using double-stranded RNA (dsRNA) targeting dvssj1 and dvssj2 demonstrate targeted mRNA suppression, larval growth inhibition, and mortality. In RNAi treated WCR, injury to the midgut was manifested by "blebbing" of the midgut epithelium into the gut lumen. Ultrastructural examination of midgut epithelial cells revealed apoptosis and regenerative activities. Transgenic plants expressing dsRNA targeting dvssj1 show insecticidal activity and significant plant protection from WCR damage. The data indicate that dvssj1 and dvssj2 are effective gene targets for the control of WCR using RNAi technology, by apparent suppression of production of their respective smooth septate junction membrane proteins located within the intestinal lining, leading to growth inhibition and mortality.


Asunto(s)
Escarabajos/genética , Proteínas de Insectos/genética , Control Biológico de Vectores/métodos , Interferencia de ARN , Zea mays/genética , Animales , Tracto Gastrointestinal/fisiología , Tracto Gastrointestinal/ultraestructura , Regulación de la Expresión Génica , Larva/crecimiento & desarrollo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , ARN Bicatenario
9.
J Exp Bot ; 65(1): 249-60, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24218327

RESUMEN

Crop improvement for yield and drought tolerance is challenging due to the complex genetic nature of these traits and environmental dependencies. This study reports that transgenic over-expression of Zea mays AR GOS1 (ZAR1) enhanced maize organ growth, grain yield, and drought-stress tolerance. The ZAR1 transgene exhibited environmental interactions, with yield increase under Temperate Dry and yield reduction under Temperate Humid or High Latitude environments. Native ZAR1 allele variation associated with drought-stress tolerance. Two founder alleles identified in the mid-maturity germplasm of North America now predominate in Pioneer's modern breeding programme, and have distinct proteins, promoters and expression patterns. These two major alleles show heterotic group partitioning, with one predominant in Pioneer's female and the other in the male heterotic groups, respectively. These two alleles also associate with favourable crop performance when heterozygous. Allele-specific transgene testing showed that, of the two alleles discussed here, each allele differed in their impact on yield and environmental interactions. Moreover, when transgenically stacked together the allelic pair showed yield and environmental performance advantages over either single allele, resembling heterosis effects. This work demonstrates differences in transgenic efficacy of native alleles and the differences reflect their association with hybrid breeding performance.


Asunto(s)
Vigor Híbrido , Proteínas de Plantas/genética , Zea mays/genética , Alelos , Secuencia de Bases , Biomasa , Cruzamiento , Sequías , Expresión Génica , Interacción Gen-Ambiente , Variación Genética , Haplotipos , Datos de Secuencia Molecular , Familia de Multigenes , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/fisiología , Análisis de Secuencia de ADN , Transgenes , Zea mays/crecimiento & desarrollo , Zea mays/fisiología
10.
Plant Cell ; 22(4): 1057-73, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20400678

RESUMEN

Genes involved in cell number regulation may affect plant growth and organ size and, ultimately, crop yield. The tomato (genus Solanum) fruit weight gene fw2.2, for instance, governs a quantitative trait locus that accounts for 30% of fruit size variation, with increased fruit size chiefly due to increased carpel ovary cell number. To expand investigation of how related genes may impact other crop plant or organ sizes, we identified the maize (Zea mays) gene family of putative fw2.2 orthologs, naming them Cell Number Regulator (CNR) genes. This family represents an ancient eukaryotic family of Cys-rich proteins containing the PLAC8 or DUF614 conserved motif. We focused on native expression and transgene analysis of the two maize members closest to Le-fw2.2, namely, CNR1 and CNR2. We show that CNR1 reduced overall plant size when ectopically overexpressed and that plant and organ size increased when its expression was cosuppressed or silenced. Leaf epidermal cell counts showed that the increased or decreased transgenic plant and organ size was due to changes in cell number, not cell size. CNR2 expression was found to be negatively correlated with tissue growth activity and hybrid seedling vigor. The effects of CNR1 on plant size and cell number are reminiscent of heterosis, which also increases plant size primarily through increased cell number. Regardless of whether CNRs and other cell number-influencing genes directly contribute to, or merely mimic, heterosis, they may aid generation of more vigorous and productive crop plants.


Asunto(s)
Proteínas de Plantas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , ADN Bacteriano/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Vigor Híbrido , Modelos Moleculares , Familia de Multigenes , Fenotipo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , ARN de Planta/genética , Alineación de Secuencia
11.
Mol Plant Microbe Interact ; 23(1): 6-16, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19958134

RESUMEN

Fusarium kernel rot disease starburst symptomatology was characterized fully for the first time. Two maize lines were hand pollinated and inoculated, using a fluorescent protein-expressing transformant of the fungal pathogen Fusarium verticillioides, by introduction of a conidial suspension through the silk channel of intact ears. Microscopy was used to identify the infection court and document initial stages of kernel colonization and subsequent manifestation of macroscopic symptoms. The fungus entered kernels of susceptible line AD38 via an open stylar canal and spread extracellularly and over the kernel through the nucellus region, sporadically entering pericarp and filling the long thick-walled mesocarp cells. Hyphae spread within pericarp from cell to cell via pits, colonizing files of host cells by growing both up and down the kernel in a radial pattern that preceded macroscopic symptom development. The starburst symptom developed subsequently, and mirrored colonization exactly, when there was extensive dissolution of the thick walls of pericarp cells. Line HT1 exhibited a closed stylar canal phenotype and was not susceptible-except when the pericarp surface was breached mechanically. We hypothesize the passive movement of conidia along the surface of silks, perhaps via capillarity, as a possible mechanism for pathogen access to the infection court.


Asunto(s)
Fusarium/fisiología , Interacciones Huésped-Patógeno/fisiología , Zea mays/microbiología , Microscopía por Crioelectrón , Fusarium/crecimiento & desarrollo , Fusarium/ultraestructura , Hifa/crecimiento & desarrollo , Hifa/ultraestructura , Fenotipo , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...