Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(49): eadh4179, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064560

RESUMEN

Cytochrome c oxidase (CcO) is part of the respiratory chain and contributes to the electrochemical membrane gradient in mitochondria as well as in many bacteria, as it uses the energy released in the reduction of oxygen to pump protons across an energy-transducing biological membrane. Here, we use time-resolved serial femtosecond crystallography to study the structural response of the active site upon flash photolysis of carbon monoxide (CO) from the reduced heme a3 of ba3-type CcO. In contrast with the aa3-type enzyme, our data show how CO is stabilized on CuB through interactions with a transiently ordered water molecule. These results offer a structural explanation for the extended lifetime of the CuB-CO complex in ba3-type CcO and, by extension, the extremely high oxygen affinity of the enzyme.


Asunto(s)
Monóxido de Carbono , Complejo IV de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Dominio Catalítico , Monóxido de Carbono/química , Cristalografía , Oxidación-Reducción , Oxígeno/metabolismo
2.
ACS Chem Biol ; 15(11): 2885-2895, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33164499

RESUMEN

The alarming growth of antibiotic resistance that is currently ongoing is a serious threat to human health. One of the most promising novel antibiotic targets is MraY (phospho-MurNAc-pentapeptide-transferase), an essential enzyme in bacterial cell wall synthesis. Through recent advances in biochemical research, there is now structural information available for MraY, and for its human homologue GPT (GlcNAc-1-P-transferase), that opens up exciting possibilities for structure-based drug design. The antibiotic compound tunicamycin is a natural product inhibitor of MraY that is also toxic to eukaryotes through its binding to GPT. In this work, we have used tunicamycin and modified versions of tunicamycin as tool compounds to explore the active site of MraY and to gain further insight into what determines inhibitor potency. We have investigated tunicamycin variants where the following motifs have been modified: the length and branching of the tunicamycin fatty acyl chain, the saturation of the fatty acyl chain, the 6″-hydroxyl group of the GlcNAc ring, and the ring structure of the uracil motif. The compounds are analyzed in terms of how potently they bind to MraY, inhibit the activity of the enzyme, and affect the protein thermal stability. Finally, we rationalize these results in the context of the protein structures of MraY and GPT.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Dominio Catalítico/efectos de los fármacos , Transferasas/antagonistas & inhibidores , Transferasas/química , Tunicamicina/farmacología , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Clostridium/enzimología , Infecciones por Clostridium/tratamiento farmacológico , Guanosina Trifosfato/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)
3.
Front Chem ; 6: 233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30023356

RESUMEN

Mammalian cell surfaces are decorated with complex glycoconjugates that terminate with negatively charged sialic acids. Commensal and pathogenic bacteria can use host-derived sialic acids for a competitive advantage, but require a functional sialic acid transporter to import the sugar into the cell. This work investigates the sodium sialic acid symporter (SiaT) from Staphylococcus aureus (SaSiaT). We demonstrate that SaSiaT rescues an Escherichia coli strain lacking its endogenous sialic acid transporter when grown on the sialic acids N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). We then develop an expression, purification and detergent solubilization system for SaSiaT and demonstrate that the protein is largely monodisperse in solution with a stable monomeric oligomeric state. Binding studies reveal that SaSiaT has a higher affinity for Neu5Gc over Neu5Ac, which was unexpected and is not seen in another SiaT homolog. We develop a homology model and use comparative sequence analyses to identify substitutions in the substrate-binding site of SaSiaT that may explain the altered specificity. SaSiaT is shown to be electrogenic, and transport is dependent upon more than one Na+ ion for every sialic acid molecule. A functional sialic acid transporter is essential for the uptake and utilization of sialic acid in a range of pathogenic bacteria, and developing new inhibitors that target these transporters is a valid mechanism for inhibiting bacterial growth. By demonstrating a route to functional recombinant SaSiaT, and developing the in vivo and in vitro assay systems, our work underpins the design of inhibitors to this transporter.

4.
Drug Discov Today ; 23(7): 1426-1435, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29778697

RESUMEN

The rapid growth of antibiotic-resistant bacterial infections is of major concern for human health. Therefore, it is of great importance to characterize novel targets for the development of antibacterial drugs. One promising protein target is MraY (UDP-N-acetylmuramyl-pentapeptide: undecaprenyl phosphate N-acetylmuramyl-pentapeptide-1-phosphate transferase or MurNAc-1-P-transferase), which is essential for bacterial cell wall synthesis. Here, we summarize recent breakthroughs in structural studies of bacterial MraYs and the closely related human GPT (UDP-N-acetylglucosamine: dolichyl phosphate N-acetylglucosamine-1-phosphate transferase or GlcNAc-1-P-transferase). We present a detailed comparison of interaction modes with the natural product inhibitors tunicamycin and muraymycin D2. Finally, we speculate on possible routes to design an antibacterial agent in the form of a potent and selective inhibitor against MraY.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Peptidoglicano/biosíntesis , Transferasas/antagonistas & inhibidores , Animales , Antibacterianos/síntesis química , Bacterias/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana , Inhibidores Enzimáticos/síntesis química , Humanos , Modelos Moleculares , Nucleósidos/química , Nucleósidos/farmacología , Péptidos/química , Péptidos/farmacología , Conformación Proteica , Relación Estructura-Actividad , Transferasas/química , Transferasas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/antagonistas & inhibidores , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Tunicamicina/química , Tunicamicina/farmacología
5.
Nat Commun ; 9(1): 1753, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717135

RESUMEN

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.


Asunto(s)
Transportadores de Anión Orgánico/metabolismo , Sodio/metabolismo , Simportadores/metabolismo , Secuencia de Aminoácidos , Ácido N-Acetilneuramínico/metabolismo , Transportadores de Anión Orgánico/química , Pliegue de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Simportadores/química
6.
Sci Rep ; 7(1): 4518, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28674417

RESUMEN

Cytochrome c oxidase catalyses the reduction of molecular oxygen to water while the energy released in this process is used to pump protons across a biological membrane. Although an extremely well-studied biological system, the molecular mechanism of proton pumping by cytochrome c oxidase is still not understood. Here we report a method to produce large quantities of highly diffracting microcrystals of ba 3-type cytochrome c oxidase from Thermus thermophilus suitable for serial femtosecond crystallography. The room-temperature structure of cytochrome c oxidase is solved to 2.3 Å resolution from data collected at an X-ray Free Electron Laser. We find overall agreement with earlier X-ray structures solved from diffraction data collected at cryogenic temperature. Previous structures solved from synchrotron radiation data, however, have shown conflicting results regarding the identity of the active-site ligand. Our room-temperature structure, which is free from the effects of radiation damage, reveals that a single-oxygen species in the form of a water molecule or hydroxide ion is bound in the active site. Structural differences between the ba 3-type and aa 3-type cytochrome c oxidases around the proton-loading site are also described.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Modelos Moleculares , Conformación Proteica , Temperatura , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Ligandos , Unión Proteica , Protones , Relación Estructura-Actividad , Thermus thermophilus/enzimología
7.
Acta Crystallogr A Found Adv ; 73(Pt 2): 93-101, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28248658

RESUMEN

Serial crystallography is an increasingly important approach to protein crystallography that exploits both X-ray free-electron laser (XFEL) and synchrotron radiation. Serial crystallography recovers complete X-ray diffraction data by processing and merging diffraction images from thousands of randomly oriented non-uniform microcrystals, of which all observations are partial Bragg reflections. Random fluctuations in the XFEL pulse energy spectrum, variations in the size and shape of microcrystals, integrating over millions of weak partial observations and instabilities in the XFEL beam position lead to new types of experimental errors. The quality of Bragg intensity estimates deriving from serial crystallography is therefore contingent upon assumptions made while modeling these data. Here it is observed that serial femtosecond crystallography (SFX) Bragg reflections do not follow a unimodal Gaussian distribution and it is recommended that an idealized assumption of single Gaussian peak profiles be relaxed to incorporate apparent asymmetries when processing SFX data. The phenomenon is illustrated by re-analyzing data collected from microcrystals of the Blastochloris viridis photosynthetic reaction center and comparing these intensity observations with conventional synchrotron data. The results show that skewness in the SFX observations captures the essence of the Wilson plot and an empirical treatment is suggested that can help to separate the diffraction Bragg intensity from the background.


Asunto(s)
Cristalografía por Rayos X , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Conformación Proteica , Hyphomicrobiaceae , Rayos Láser , Proteínas , Sincrotrones , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...