Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
J Clin Pharmacol ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38720593

Obicetrapib is a selective inhibitor of cholesteryl ester transfer protein that is currently in phase 3 of development for the treatment of dyslipidemia as adjunct therapy. The purpose of this study was to comprehensively characterize the pharmacokinetic (PK) and pharmacodynamic (PD) disposition of obicetrapib. Data from 7 clinical trials conducted in healthy adults and those with varying degrees of dyslipidemia were included for model development. The structural model that best described obicetrapib PK was a 3-compartment model with 4-compartment transit absorption and first-order elimination. Body weight was the only covariate found to significantly explain observed variability and was therefore included using allometric scaling on all disposition parameters. For a typical patient weighing 75 kg, the estimated apparent total body clearance and apparent volume of distribution of the central compartment was 0.81 L/h and 36.1 L, respectively. The final PK model parameters were estimated with good precision and were ultimately leveraged to sequentially inform 2 turnover models that describe obicetrapib's effect on low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) concentrations. The maximum stimulatory effect of obicetrapib on LDL-C loss was estimated to be 1.046, while the maximum inhibitory effect of obicetrapib on HDL-C loss was 0.691. This corresponds to a predicted typical maximum percent change from baseline LDL-C and HDL-C of 51.1% and 224%, respectively. The final sequential model described obicetrapib PKPD well and was ultimately able to both demonstrate evidence of internal consistency and support decision-making throughout the development lifecycle.

2.
Adv Redox Res ; 102024 Apr.
Article En | MEDLINE | ID: mdl-38562524

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.

3.
Article En | MEDLINE | ID: mdl-38483557

Belinostat was approved in 2014 for the treatment of relapsed or refractory peripheral T-cell lymphoma, however, there was insufficient data to recommend a dose in patients with moderate to severe hepatic impairment. The purpose of this analysis was to characterize the pharmacokinetic disposition of belinostat and its five metabolites in patients with advanced cancers and varying degrees of liver dysfunction. A population pharmacokinetic model was therefore developed to describe the parent-metabolite system. The final model was then implemented to assess the effect of liver impairment on each metabolic pathway of belinostat. It was determined that significant pharmacokinetic differences could only be demonstrated in patients with severe hepatic impairment. The final model estimated a 35%-47% reduction in metabolic clearance attributed to UGT1A1/2B7 glucuronidation, CYP2A6/3A4/2C9 metabolism, and ß-oxidation. These hepatic impairment effects reduced between-subject variability by only 5%-8% for their respective parameter, with a large amount of remaining unexplained variability. With further validation, this model can be leveraged to assess the need for dose adjustments in this patient population.

4.
J Infect Dis ; 228(Suppl 4): S297-S301, 2023 10 03.
Article En | MEDLINE | ID: mdl-37788503

While antimicrobials are among the most prescribed drugs, the use of some older antibiotics is not optimized for efficacy in terms of dosage, route of administration, and duration of therapy. Knowledge gaps exist regarding the heterogeneous microenvironments within different infected tissues consisting of varying bacterial loads, immune responses, and drug gradients. Positron-emission tomography-based imaging, where radiolabeled drugs are visualized within the living body, enables accurate, holistic, and real-time determination of pharmacokinetics to provide valuable, actionable data to optimize antibiotic use. Here we briefly review the concepts, history, and recent progress in the field.


Molecular Imaging , Positron-Emission Tomography , Positron-Emission Tomography/methods , Molecular Imaging/methods , Pharmaceutical Preparations , Anti-Bacterial Agents
5.
New Dir Stud Leadersh ; 2023(178): 87-98, 2023 06.
Article En | MEDLINE | ID: mdl-37309861

This article highlights specific approaches to developing leadership identity in college students within an academic curricular context. The authors examine curricular contexts such as majors, minors, and certificates with an emphasis on leader and leadership development, as well as specific course activities used to engage students in developing their leadership identity.


Leadership , Students , Humans
6.
Br J Clin Pharmacol ; 2023 Apr 02.
Article En | MEDLINE | ID: mdl-37005339

The field of pharmacometrics has been responsible for countless advancements within the drug development space. In recent years, we have witnessed the implementation of both new and revived analytical methods to increase clinical trial success and even supplement the need for clinical trials all together. Throughout this article, we will explore the path of pharmacometrics from its inception to the present day. At this point in time, the target of drug development has been the average patient, and population approaches have primarily been utilized to support just that. The challenge we are now facing involves the translation from treating the typical patient to treating the real-world patient. For this reason, it is our opinion that future development efforts should account more for the individual. With advanced pharmacometric methods and growing technological infrastructure, precision medicine can become a development priority rather than a clinician's burden.

7.
Front Toxicol ; 5: 1096173, 2023.
Article En | MEDLINE | ID: mdl-36950144

The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulations, thus functioning as an interface that profoundly impacts fetal growth and development. The placenta has long been considered an asexual organ, but, due to its embryonic origin it shares the same sex as the fetus. Exposures to toxicant such as diesel exhaust, have been shown to result in sexually dimorphic outcomes like decreased placental mass in exposed females. Therefore, we hypothesize that maternal nano-TiO2 inhalation exposure during gestation alters placental hemodynamics in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.69 mg/m3) or filtered air (sham-control). Dams were euthanized on GD20, and fetal tissue was collected based on fetal sex: whole placentas, placental junctional zone (JZ), and placental labyrinth zone (LZ). Fetal mass, placental mass, and placental zone percent areas were assessed for sex-based differences. Exposed fetal females were significantly smaller compared to their exposed male counterparts (2.65 ± 0.03 g vs 2.78 ± 0.04 g). Nano-TiO2 exposed fetal females had a significantly decreased percent junctional zone area compared to the sham-control females (24.37 ± 1.30% vs 30.39 ± 1.54%). The percent labyrinth zone area was significantly increased for nano-TiO2 females compared to sham-control females (75.63 ± 1.30% vs 69.61 ± 1.54%). Placental flow and hemodynamics were assessed with a variety of vasoactive substances. It was found that nano-TiO2 exposed fetal females only had a significant decrease in outflow pressure in the presence of the thromboxane (TXA2) mimetic, U46619, compared to sham-control fetal females (3.97 ± 1.30 mm Hg vs 9.10 ± 1.07 mm Hg) and nano-TiO2 fetal males (9.96 ± 0.66 mm Hg). Maternal nano-TiO2 inhalation exposure has a greater effect on fetal female mass, placental zone mass and area, and adversely impacts placental vasoreactivity. This may influence the female growth and development later in life, future studies need to further study the impact of maternal nano-TiO2 inhalation exposure on zone specific mechanisms.

8.
Cancer Chemother Pharmacol ; 91(3): 219-230, 2023 03.
Article En | MEDLINE | ID: mdl-36813886

PURPOSE: This study aimed at characterizing indotecan population pharmacokinetics and explore the indotecan-neutropenia relationship in patients with solid tumors. METHODS: Population pharmacokinetics were assessed using nonlinear mixed-effects modeling of concentration data from two first-in-human phase 1 trials evaluating different dosing schedules of indotecan. Covariates were assessed in a stepwise manner. Final model qualification included bootstrap simulation, visual and quantitative predictive checks, and goodness-of-fit. A sigmoidal Emax model was developed to describe the relationship between average concentration and maximum percent neutrophil reduction. Simulations at fixed doses were conducted to determine the mean predicted decrease in neutrophil count for each schedule. RESULTS: 518 concentrations from 41 patients supported a three-compartment pharmacokinetic model. Body weight and body surface area accounted for inter-individual variability of central/peripheral distribution volume and intercompartmental clearance, respectively. Estimated typical population values were CL 2.75 L/h, Q3 46.0 L/h, and V3 37.9 L. The estimated value of Q2 for a typical patient (BSA = 1.96 m2) was 17.3 L/h, while V1 and V2 for a typical patient (WT = 80 kg) was 33.9 L and 132 L. The final sigmoidal Emax model estimated that half-maximal ANC reduction occurs at an average concentration of 1416 µg/L and 1041 µg/L for the daily and weekly regimens, respectively. Simulations of the weekly regimen demonstrated lower percent reduction in ANC compared to the daily regimen at equivalent cumulative fixed doses. CONCLUSION: The final PK model adequately describes indotecan population pharmacokinetics. Fixed dosing may be justified based on covariate analysis and the weekly dosing regimen may have a reduced neutropenic effect.


Neoplasms , Neutropenia , Humans , Neoplasms/drug therapy , Body Weight , Leukocyte Count , Models, Biological
9.
Ther Innov Regul Sci ; 56(6): 873-882, 2022 11.
Article En | MEDLINE | ID: mdl-35471560

Improving pediatric therapeutic development is a mission of universal importance among health authorities, pharmaceutical companies, academic institutions, and healthcare professionals. Following the passage of legislation in the United States and Europe, we witnessed the most significant advancement yet in pediatric data generation, resulting in added pediatric use information to almost 700 product labels. Tools to accelerate generation of data for the pediatric population are available for use today, and when utilized in accordance with current practices and laws, these tools could increase the amount and timeliness of pediatric information available for clinicians and patients. If we utilize the current laws that allow regulators to incentivize and require evidence generation, apply extrapolation, and utilize modeling and simulation, as well as including adolescents in the pivotal studies alongside adults as appropriate, two strategic goals could be achieved by 2030: (1) reduce the time to pediatric approval by 50%, and (2) renew pediatric labeling information for 15 priority pediatric drugs without patent and/or exclusivity.


Pharmaceutical Preparations , Adolescent , Adult , Child , Europe , Humans , United States
10.
Br J Clin Pharmacol ; 88(5): 2223-2235, 2022 05.
Article En | MEDLINE | ID: mdl-34799882

AIM: The study objective was to develop a population pharmacokinetic model for busulfan to comprehensively examine drug-drug interactions in paediatric patients undergoing haematopoietic stem cell transplantation. Currently, there is limited evidence to substantiate potential drug-drug interactions with busulfan. METHODS: This retrospective study population was comprised of 250 patients receiving, on average, 0.8 mg/kg intravenous busulfan as pretreatment. All model analyses were conducted using nonlinear mixed effects modelling in Pumas v2.0. The metabolic pathways of primary interest were glutathione conjugation and cytochrome P450 (CYP) activity. Concomitant medications were categorized as CYP inhibitors, inducers or glutathione S-transferase depleters, and included in the model as conditional covariates. A bootstrap simulation and visual predictive check were conducted to qualify the final model. RESULTS: The final 1-compartment model incorporates covariates of weight and age in relation to their effects on both total body clearance and volume of distribution. The estimated typical values of clearance and volume were 1.138 L/h (CI: 1.095-1.179 L/h) and 3.527 L (CI: 3.418-3.621 L), respectively. No significant changes in clearance were observed when medications that alter proposed hepatic and metabolic pathways of busulfan were coadministered. CONCLUSION: To the best of our knowledge, this is the largest single centre study of busulfan in children and the first to quantify the maturation effect of both clearance and volume. This study could not demonstrate a difference in busulfan clearance when comparing patients who received medications that alter the glutathione S-transferase, CYP3A4 or CYP2C9 pathway to those who did not.


Busulfan , Hematopoietic Stem Cell Transplantation , Busulfan/pharmacokinetics , Child , Drug Interactions , Glutathione Transferase/metabolism , Humans , Retrospective Studies
11.
Infect Immun ; 88(4)2020 03 23.
Article En | MEDLINE | ID: mdl-31932331

Candida albicans is a pervasive commensal fungus that is the most common pathogen responsible for invasive fungal infection (IFI). With incidence of IFI on the rise due to increasing susceptible populations, it is imperative that we investigate how Candida albicans interacts with blood components. When stimulating either human or mouse whole blood with thrombin, we saw a significant decrease in C. albicans survival. We then repeated Candida killing assays with thrombin-stimulated or unstimulated washed platelets and saw a similar decrease in CFU. To investigate whether killing was mediated through surface components or releasable products, platelets were pretreated with an inhibitor of actin polymerization (cytochalasin D [CytoD]). CytoD was able to abrogate C. albicans killing. Moreover, dilution of releasates from thrombin-stimulated platelets showed that the toxicity of the releasates on C. albicans is concentration dependent. We then investigated C. albicans actions on platelet activation, granule release, and aggregation. While C. albicans does not appear to affect alpha or dense granule release, C. albicans exerts a significant attenuation of platelet aggregation to multiple agonists. These results illustrate for the first time that platelets can directly kill C. albicans through release of their granular contents. Additionally, C. albicans can also exert inhibitory effects on platelet aggregation.


Antifungal Agents/metabolism , Blood Platelets/metabolism , Blood Platelets/microbiology , Candida albicans/immunology , Immunologic Factors/metabolism , Animals , Candida albicans/physiology , Colony Count, Microbial , Humans , Mice , Microbial Viability/drug effects
12.
Otol Neurotol ; 38(1): 139-146, 2017 01.
Article En | MEDLINE | ID: mdl-27755359

HYPOTHESIS: p21-activated kinase (PAK) regulates signaling pathways that promote cell survival and proliferation; therefore, pharmacological inhibition of PAK will induce cell death in vestibular schwannomas (VS) and meningiomas. BACKGROUND: All VS and many meningiomas result from loss of the neurofibromatosis type 2 (NF2) gene product merlin, with ensuing PAK hyperactivation and increased cell proliferation/survival. METHODS: The novel small molecule PAK inhibitors PI-8 and PI-15-tested in schwannoma and meningioma cells-perturb molecular signaling and induce cell death. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay analyzed PAK inhibitors' effect on cell viability, cell cycle, and cell death, respectively. Western blots evaluated activation and expression of cell proliferation, apoptotic, and mitotic catastrophe markers. Light microscopy evaluated cell morphology, and immunocytochemistry analyzed cellular localization of phospho-Merlin and autophagy-related protein. RESULTS: Treatment with PI-8 and PI-15 decreased cell viability at 0.65 to 3.7 µM 50% inhibitory concentration (IC50) in schwannoma and meningioma cells. Terminal deoxynucleotidyl transferase dUTP nick end labeling and immunocytochemistry studies show that PI-8 and PI-15 induce mitotic catastrophe but not apoptosis in HEI193 cells while in BenMen1 cells, PI-8 induces autophagy and mitotic catastrophe. PI-15 induces apoptosis in BenMen1 cells. PAK inhibitor treated cells show phospho-Merlin localized to over-duplicated centrosomes of dividing cells, multiple enlarged nuclei, and misaligned/missegregated chromosomes-markers for mitotic catastrophe. Increased autophagy-related protein levels in the nucleus confirmed this cell death type. PI-8 and PI-15 inhibits PAK in both cell lines. However, only PI-15 inhibits v-akt murine thymoma viral oncogene homolog in BenMen1 cells. CONCLUSION: PAK inhibitors induce cell death in schwannoma and meningioma cells, at least in part, by mitotic catastrophe.


Meningeal Neoplasms/pathology , Meningioma/pathology , Neuroma, Acoustic/pathology , Protein Kinase Inhibitors/pharmacology , p21-Activated Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , In Situ Nick-End Labeling , Meningeal Neoplasms/metabolism , Meningioma/metabolism , Mitosis/drug effects , Neuroma, Acoustic/metabolism , Signal Transduction/drug effects
13.
PLoS One ; 10(8): e0136237, 2015.
Article En | MEDLINE | ID: mdl-26302444

Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.


Ecosystem , Forests , Trees/growth & development , Urban Renewal , Carbon/metabolism , Environmental Monitoring , Humans , Massachusetts
14.
Transl Res ; 166(5): 440-50, 2015 Nov.
Article En | MEDLINE | ID: mdl-26027789

Hearing loss is one of the most common human sensory disabilities, adversely affecting communication, socialization, mood, physical functioning, and quality of life. In addition to age and noise-induced damage, ototoxicity is a common cause of sensorineural hearing loss with chemotherapeutic agents, for example, cisplatin, being a major contributor. Zebrafish (Danio rerio) are an excellent model to study hearing loss as they have neurosensory hair cells on their body surface that are structurally similar to those within the human inner ear. Anatomic assays of toxin-mediated hair cell damage in zebrafish have been established; however, using fish swimming behavior--rheotaxis--as a biomarker for this anatomic damage was only recently described. We hypothesized that, in parallel, multilane measurements of rheotaxis could be used to create a high-throughput platform for drug development assessing both ototoxic and potentially otoprotective compounds in real time. Such a device was created, and results demonstrated a clear dose response between cisplatin exposure, progressive hair cell damage, and reduced rheotaxis in zebrafish. Furthermore, pre-exposure to the otoprotective medication dexamethasone, before cisplatin exposure, partially rescued rheotaxis swimming behavior and hair cell integrity. These results provide the first evidence that rescued swimming behavior can serve as a biomarker for rescued hair cell function. Developing a drug against hearing loss represents an unmet clinical need with global implications. Because hearing loss from diverse etiologies may result from common end-effects at the hair cell level, lessons learned from the present study may be broadly used.


Drug-Related Side Effects and Adverse Reactions , Hair Cells, Auditory/drug effects , Hearing Loss/drug therapy , Swimming , Zebrafish/physiology , Animals , Drug Design
15.
New Phytol ; 188(1): 175-86, 2010 Oct.
Article En | MEDLINE | ID: mdl-20618918

• In this study, we used a canopy photosynthesis model which describes changes in photosynthetic capacity with slow temperature-dependent acclimations. • A flux-partitioning algorithm was applied to fit the photosynthesis model to net ecosystem exchange data for 12 evergreen coniferous forests from northern temperate and boreal regions. • The model accounted for much of the variation in photosynthetic production, with modeling efficiencies (mean > 67%) similar to those of more complex models. The parameter describing the rate of acclimation was larger at the northern sites, leading to a slower acclimation of photosynthesis to temperature. The response of the rates of photosynthesis to air temperature in spring was delayed up to several days at the coldest sites. Overall photosynthesis acclimation processes were slower at colder, northern locations than at warmer, more southern, and more maritime sites. • Consequently, slow changes in photosynthetic capacity were essential to explaining variations of photosynthesis for colder boreal forests (i.e. where acclimation of photosynthesis to temperature was slower), whereas the importance of these processes was minor in warmer conifer evergreen forests.


Acclimatization/physiology , Models, Biological , Photosynthesis/physiology , Temperature , Tracheophyta/physiology , Trees/physiology , Seasons , Time Factors
16.
Ecol Appl ; 19(2): 495-504, 2009 Mar.
Article En | MEDLINE | ID: mdl-19323205

We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands.


Carbon Dioxide/analysis , Environment , Picea/physiology , Soil , Bryopsida , Carbon Dioxide/metabolism , Manitoba , Photosynthesis , Picea/metabolism , Seasons , Sphagnopsida , Temperature , Trees/metabolism , Trees/physiology , Water , Wetlands
17.
Bioorg Med Chem Lett ; 19(1): 27-30, 2009 Jan 01.
Article En | MEDLINE | ID: mdl-19058966

Endothelial lipase (EL) activity has been implicated in HDL catabolism, vascular inflammation, and atherogenesis, and inhibitors are therefore expected to be useful for the treatment of cardiovascular disease. Sulfonylfuran urea 1 was identified in a high-throughput screening campaign as a potent and non-selective EL inhibitor. A lead optimization effort was undertaken to improve potency and selectivity, and modifications leading to improved LPL selectivity were identified. Radiolabeling studies were undertaken to establish the mechanism of action for these inhibitors, which were ultimately demonstrated to be irreversible inhibitors.


Furans , Lipase/antagonists & inhibitors , Sulfonylurea Compounds/chemical synthesis , Animals , Cardiovascular Diseases/drug therapy , Drug Discovery , Drug Evaluation, Preclinical , Endothelium/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Sulfonylurea Compounds/pharmacology
18.
Bioorg Med Chem Lett ; 17(5): 1296-301, 2007 Mar 01.
Article En | MEDLINE | ID: mdl-17194588

The identification and exploration of a novel, potent and selective series of N-(3-cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amide inhibitors of JNK2 and JNK3 kinases is described. Compounds 5a and 11a were identified as potent inhibitors of JNK3 (pIC50 6.7 and 6.6, respectively), with essentially equal potency against JNK2 (pIC50 6.5). Selectivity within the mitogen-activated protein kinase (MAPK) family, against JNK1, p38alpha and ERK2, was observed for the series. X-ray crystallography of 5e and 8a in JNK3 revealed a unique binding mode, with the 3-cyano substituent forming an H-bond acceptor interaction with the hinge region of the ATP-binding site.


Amides/chemical synthesis , Benzene Derivatives/chemical synthesis , Mitogen-Activated Protein Kinase 10/antagonists & inhibitors , Mitogen-Activated Protein Kinase 9/antagonists & inhibitors , Amides/chemistry , Amides/pharmacology , Benzene Derivatives/chemistry , Benzene Derivatives/pharmacology , Binding Sites , Crystallography, X-Ray , Humans , Mitogen-Activated Protein Kinase 10/chemistry , Mitogen-Activated Protein Kinase 9/chemistry , Structure-Activity Relationship
19.
SEB Exp Biol Ser ; : 151-85, 2005.
Article En | MEDLINE | ID: mdl-17633035

The Boreal forest is the world's second largest forested biome occupying the circumpolar region between 50 degrees N and 70 degrees N. This heterogeneous biome stores about 25% of all terrestrial carbon. We have reviewed EC measurements of CO2 exchange between the atmosphere and Boreal forests, and assessed progress in understanding the controlling processes. We have assessed net ecosystem productivity, the net balance between net primary productivity and heterotrophic respiration, measured using the EC method, for 38 Boreal forest sites. Gross ecosystem productivity has been estimated by adding day-time EC-measured CO2 fluxes to respiration estimated from night-time relationships between respiration and temperature. Maximum midday values of gross ecosystem productivity vary from 33 pmol m(-2) s(-1) for aspen to 6 micromol m(-2) s(-1) for larch stands. Long-term EC flux measurements, ongoing at nine Boreal sites, have shown the strong impact of spring weather and growing season water balance on annual net ecosystem productivity. Estimation of net biome production, incorporating the effects of disturbance resulting from forest fires and logging, has progressed significantly in recent years. After disturbance, summer measurements in Boreal chronosequences suggest that it takes about 10 years before growing season carbon uptake offsets the decomposition emissions. Small-scale exchange rate measurements using chambers and manipulative experiments such as stem girdling and soil heating help to understand the processes and mechanisms playing major roles in the carbon balance of terrestrial ecosystems. Aircraft EC flux measurements, convective boundary layer carbon budgets, and (13)C/12C changes in the atmosphere play an important role in validating estimates of regional carbon exchange based on scaled up EC measurements. Atmospheric inverse models are an important approach to studying regional and global carbon balance but need further improvement to yield reliable quantitative results.


Air Pollutants/analysis , Carbon Dioxide/metabolism , Environmental Monitoring/methods , Greenhouse Effect , Models, Theoretical , Trees/metabolism , Biomass , Carbon Dioxide/analysis , Ecosystem , Photosynthesis , Wind
...