Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 7(28): 24249-24255, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35874252

RESUMEN

Methane is an abundant resource and the main constituent of natural gas. It can be converted into higher value-added products and as a subproduct of electricity co-generation. The application of polymer electrolyte reactors for the partial oxidation of methane to methanol to co-generate power and chemical products is a topic of great interest for gas and petroleum industries, especially with the use of materials with a lower amount of metals, such as palladium complex. In this study, we investigate the ideal relationship between cis-[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine(dichloride)palladium(II)] (Pd-complex) nanostructure and carbon to obtain a stable, conductive, and functional reagent diffusion electrode. The physical and structural properties of the material were analyzed by Fourier transform infrared (FT-IR) and Raman spectroscopies, transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques. The electrocatalytic activity studies revealed that the most active proportion was 20% of Pd-complex supported on carbon (m/m), which was measured with lower values of open-circuit and power density but with higher efficiency in methanol production with reaction rates of r = 4.2 mol L-1·h-1 at 0.05 V.

2.
ACS Omega ; 5(26): 16003-16009, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32656421

RESUMEN

The application of solid electrolyte reactors for methane oxidation to co-generation of power and chemicals could be interesting, mainly with the use of materials that could come from renewable sources and abundant metals, such as the [6,6'- (2, 2'-bipyridine-6, 6'-diyl)bis (1,3,5-triazine-2, 4-diamine)](nitrate-O)copper (II) complex. In this study, we investigated the optimal ratio between this complex and carbon to obtain a stable, conductive, and functional reagent diffusion electrode. The most active Cu-complex compositions were 2.5 and 5% carbon, which were measured with higher values of open circuit and electric current, in addition to the higher methanol production with reaction rates of 1.85 mol L-1 h-1 close to the short circuit potential and 1.65 mol L-1 h-1 close to the open circuit potential, respectively. This activity was attributed to the ability of these compositions to activate water due to better distribution of the Cu complex in the carbon matrix as observed in the rotating ring disk electrode experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA