Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
PeerJ ; 12: e17157, 2024.
Article En | MEDLINE | ID: mdl-38560453

Background: Honey is a nutritious food made by bees from nectar and sweet deposits of flowering plants and has been used for centuries as a natural remedy for wound healing and other bacterial infections due to its antibacterial properties. Honey contains a diverse community of bacteria, especially probiotic bacteria, that greatly affect the health of bees and their consumers. Therefore, understanding the microorganisms in honey can help to ensure the quality of honey and lead to the identification of potential probiotic bacteria. Methods: Herein, the bacteria community in honey produced by Apis cerana was investigated by applying the next-generation sequencing (NGS) method for the V3-V4 hypervariable regions of the bacterial 16S rRNA gene. In addition, lactic acid bacteria (LAB) in the honey sample were also isolated and screened for in vitro antimicrobial activity. Results: The results showed that the microbiota of A. cerana honey consisted of two major bacterial phyla, Firmicutes (50%; Clostridia, 48.2%) and Proteobacteria (49%; Gammaproteobacteria, 47.7%). Among the 67 identified bacterial genera, the three most predominant genera were beneficial obligate anaerobic bacteria, Lachnospiraceae (48.14%), followed by Gilliamella (26.80%), and Enterobacter (10.16%). Remarkably, among the identified LAB, Lactobacillus kunkeei was found to be the most abundant species. Interestingly, the isolated L. kunkeei strains exhibited antimicrobial activity against some pathogenic bacteria in honeybees, including Klebsiella spp., Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa and Staphylococcus aureus. This underscores the potential candidacy of L. kunkeei for developing probiotics for medical use. Taken together, our results provided new insights into the microbiota community in the A. cerana honey in Hanoi, Vietnam, highlighting evidence that honey can be an unexplored source for isolating bacterial strains with potential probiotic applications in honeybees and humans.


Anti-Infective Agents , Honey , Microbiota , Humans , Bees/genetics , Animals , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Microbiota/genetics
2.
PeerJ ; 9: e12329, 2021.
Article En | MEDLINE | ID: mdl-34721997

BACKGROUND: Porcine epidemic diarrhea virus (PEDV) is a dangerous virus causing large piglet losses. PEDV spread rapidly between pig farms and caused the death of up to 90% of infected piglets. Current vaccines are only partially effective in providing immunity to suckling due to the rapid dissemination and ongoing evolution of PEDV. METHODS: In this study, the complete genome of a PEDV strain in Vietnam 2018 (IBT/VN/2018 strain) has been sequenced. The nucleotide sequence of each fragment was assembled to build a continuous complete sequence using the DNASTAR program. The complete nucleotide sequences and amino acid sequences of S, N, and ORF3 genes were aligned and analyzed to detect the mutations. RESULTS: The full-length genome was determined with 28,031 nucleotides in length which consisted of the 5'UTR, ORF1ab, S protein, ORF3, E protein, M protein, N protein, and 3'UTR region. The phylogenetic analysis showed that the IBT/VN/2018 strain was highly virulent belonged to the G2b subgroup along with the Northern American and Asian S-INDEL strains. Multiple sequence alignment of deduced amino acids revealed numerous mutations in the S, N, and ORF3 regions including one substitution 766P > L766 in the epitope SS6; two in the S0subdomain (135DN136 > 135SI136 and N144> D144); two in subdomain SHR1 at aa 1009L > M1009 and 1089S > L1089; one at aa 1279P > S1279 in subdomain SHR2 of the S protein; two at aa 364N > I364 and 378N > S378 in the N protein; four at aa 25L > S25, 70I > V70, 107C > F107, and 168D > N168 in the ORF3 protein. We identified two insertions (at aa 59NQGV62 and aa 145N) and one deletion (at aa 168DI169) in S protein. Remarkable, eight amino acid substitutions (294I > M294, 318A > S318, 335V > I335, 361A > T361, 497R > T497, 501SH502 > 501IY502, 506I > T506, 682V > I682, and 777P > L777) were found in SA subdomain. Besides, N- and O-glycosylation analysis of S, N, and ORF3 protein reveals three known sites (25G+, 123N+, and 62V+) and three novel sites (144D+, 1009M+, and 1279L+) in the IBT/VN/2018 strain compared with the vaccine strains. Taken together, the results showed that mutations in the S, N, and ORF3 genes can affect receptor specificity, viral pathogenicity, and the ability to evade the host immune system of the IBT/VN/2018 strain. Our results highlight the importance of molecular characterization of field strains of PEDV for the development of an effective vaccine to control PEDV infections in Vietnam.

3.
PeerJ ; 8: e9911, 2020.
Article En | MEDLINE | ID: mdl-33005491

BACKGROUND: Deformed wing virus (DWV) is a virulent virus that causes honeybee disease. DWV can exist as a latent infection in honeybees, outbreak into epidemics, and cause serious damage to beekeeping cross the world, including Vietnam. METHODS: The two DWV strains circulating in Vietnamese honeybee, Apis cerana, were first isolated from adult honeybees in North Vietnam (DWV-NVN) and South Vietnam (DWV-SVN). Their complete nucleotide sequences were determined, aligned, and compared with other DWV strains. RESULTS: The two Vietnamese DWV strains comprised 10,113 bp and contained a large single open reading frame (ORF) of 2,893 amino acids, initiating at nucleotide 1,130 and terminating at nucleotide 9,812. Multiple nucleotide sequence alignment between these two DWV-VN strains and DWV strains in A. mellifera was performed. The DWV-VN strains showed a low genetic identity (from 91.4% to 92.0%) with almost of these strains, but lower identities (89.2% and 89.4%) with UK2 and (89.6%) with the China2 strain. Low identities (91.7% and 91.9%) were also observed between the China3 strain (in A. cerana) and the DWV-VN strains, respectively. The deduced amino acid sequence alignment showed high genetic similarities (97.0%-97.9%) when the USA1, Chile, Italy1, France, UK1, UK2, Japan, Korea2, China1, China2 and China3 strains were compared to the DWV-VN strains. This ratio was 96.7% and 96.8% when the Korea1 strain was compared to the DWV-SVN and DWV-NVN strains, respectively. Numerous amino acid substitutions were identified in the L, VP3, and RdRp sequences. Notably, we observed six substitutions positioned at amino acids 27 (E > I), 98 (S > T), 120 (A > V), 153 (M > T), 170 (D > F), and 174 (Y > F) in the L protein, two amino acid changes at positions 980 (S > A) and 1032 (E > T) in VP3, and one amino acid change at position 2627 (R > C) unique to the DWV-VN strains. Phylogenetic analysis based on complete genome sequences, RdRp sequences and Simplot analysis indicated that there was a significant difference between DWV-VN strains in A. cerana and DWV strains in A. mellifera. The results suggested that the genetic variations of the DWV-VN strains in A. cerana help them to adapt geographical conditions and may lead to change the viral pathogenicity of DWV-VN strains.

...