Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Gut ; 70(1): 157-169, 2021 01.
Article En | MEDLINE | ID: mdl-32217639

OBJECTIVE: Hepatocellular carcinoma (HCC) is the fastest-growing cause of cancer-related mortality with chronic viral hepatitis and non-alcoholic steatohepatitis (NASH) as major aetiologies. Treatment options for HCC are unsatisfactory and chemopreventive approaches are absent. Chronic hepatitis C (CHC) results in epigenetic alterations driving HCC risk and persisting following cure. Here, we aimed to investigate epigenetic modifications as targets for liver cancer chemoprevention. DESIGN: Liver tissues from patients with NASH and CHC were analysed by ChIP-Seq (H3K27ac) and RNA-Seq. The liver disease-specific epigenetic and transcriptional reprogramming in patients was modelled in a liver cell culture system. Perturbation studies combined with a targeted small molecule screen followed by in vivo and ex vivo validation were used to identify chromatin modifiers and readers for HCC chemoprevention. RESULTS: In patients, CHC and NASH share similar epigenetic and transcriptomic modifications driving cancer risk. Using a cell-based system modelling epigenetic modifications in patients, we identified chromatin readers as targets to revert liver gene transcription driving clinical HCC risk. Proof-of-concept studies in a NASH-HCC mouse model showed that the pharmacological inhibition of chromatin reader bromodomain 4 inhibited liver disease progression and hepatocarcinogenesis by restoring transcriptional reprogramming of the genes that were epigenetically altered in patients. CONCLUSION: Our results unravel the functional relevance of metabolic and virus-induced epigenetic alterations for pathogenesis of HCC development and identify chromatin readers as targets for chemoprevention in patients with chronic liver diseases.


Carcinoma, Hepatocellular/prevention & control , Epigenesis, Genetic , Hepatitis C, Chronic/complications , Liver Neoplasms/prevention & control , Non-alcoholic Fatty Liver Disease/complications , Animals , Carcinoma, Hepatocellular/etiology , Disease Models, Animal , Hepatitis C, Chronic/genetics , Hepatitis C, Chronic/pathology , Humans , Liver Neoplasms/etiology , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology
2.
Life Sci Alliance ; 4(1)2021 01.
Article En | MEDLINE | ID: mdl-33158978

Compared with the ubiquitous expression of type I (IFNα and IFNß) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.


Antigens, CD19/metabolism , B-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Hepacivirus , Hepatitis C/blood , Interleukins/pharmacology , Lymphocyte Activation/drug effects , Signal Transduction/drug effects , Adolescent , Adult , Aged , Blood Donors , Female , Hepatitis C/pathology , Hepatitis C/virology , Humans , Interferon-alpha/pharmacology , Interferons/pharmacology , Male , Middle Aged , Receptors, Interferon/metabolism , Young Adult
3.
Life Sci Alliance ; 3(1)2020 01.
Article En | MEDLINE | ID: mdl-31822557

Infectious complications in patients with cirrhosis frequently initiate episodes of decompensation and substantially contribute to the high mortality. Mechanisms of the underlying immuneparesis remain underexplored. TAM receptors (TYRO3/AXL/MERTK) are important inhibitors of innate immune responses. To understand the pathophysiology of immuneparesis in cirrhosis, we detailed TAM receptor expression in relation to monocyte function and disease severity prior to the onset of acute decompensation. TNF-α/IL-6 responses to lipopolysaccharide were attenuated in monocytes from patients with cirrhosis (n = 96) compared with controls (n = 27) and decreased in parallel with disease severity. Concurrently, an AXL-expressing (AXL+) monocyte population expanded. AXL+ cells (CD14+CD16highHLA-DRhigh) were characterised by attenuated TNF-α/IL-6 responses and T cell activation but enhanced efferocytosis and preserved phagocytosis of Escherichia coli Their expansion correlated with disease severity, complications, infection, and 1-yr mortality. AXL+ monocytes were generated in response to microbial products and efferocytosis in vitro. AXL kinase inhibition and down-regulation reversed attenuated monocyte inflammatory responses in cirrhosis ex vivo. AXL may thus serve as prognostic marker and deserves evaluation as immunotherapeutic target in cirrhosis.


Liver Cirrhosis/blood , Liver Cirrhosis/mortality , Monocytes/immunology , Proto-Oncogene Proteins/blood , Receptor Protein-Tyrosine Kinases/blood , Severity of Illness Index , Adult , Aged , Biomarkers/blood , Female , Follow-Up Studies , Humans , Immunity, Innate , Interleukin-6/metabolism , Lymphocyte Activation/genetics , Male , Middle Aged , Monocytes/metabolism , Phagocytosis/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/genetics , THP-1 Cells , Transduction, Genetic , Tumor Necrosis Factor-alpha/metabolism , Axl Receptor Tyrosine Kinase
...