Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13438-13449, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859314

RESUMEN

This article deals with the optical study of nanostructured components which absorb light across the entire long-wave infrared (LWIR) spectral band. The components are made of type-II superlattice (T2SL) absorber and highly doped InAsSb, the latter being nanostructured to ensure multiple resonances. We studied two components: in the first one, the T2SL has a thickness of 1.6 µm, and in the second its thickness is 300 nm. The calculated absorption spectra were shown and the components revealed high absorption thanks to optical resonance and high angular acceptance. A fabrication process has been developed, and optical measurements have confirmed the reliability of the model.

2.
Phys Rev Lett ; 132(4): 043801, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335346

RESUMEN

Effective cross sections of nano-objects are fundamental properties that determine their ability to interact with light. However, measuring them for individual resonators directly and quantitatively remains challenging, particularly because of the very low signals involved. Here, we experimentally measure the thermal emission cross section of metal-insulator-metal nanoresonators using a stealthy hyperuniform distribution based on a hierarchical Poisson-disk algorithm. In such distributions, there are no long-range interactions between antennas, and we show that the light emitted by such metasurfaces behaves as the sum of cross sections of independent nanoantennas, enabling direct retrieval of the single resonator contribution. The emission cross section at resonance is found to be on the order of λ_{0}^{2}/3, a value that is nearly 3 times larger than the theoretical maximal absorption cross section of a single particle, but remains smaller than the maximal extinction cross section. This measurement technique can be generalized to any single resonator cross section, and we also apply it to a lossy dielectric layer.

3.
Nat Commun ; 14(1): 4814, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558692

RESUMEN

Detection of molecules is a key issue for many applications. Surface enhanced infrared absorption (SEIRA) uses arrays of resonant nanoantennas with good quality factors which can be used to locally enhance the illumination of molecules. The technique has proved to be an effective tool to detect small amount of material. However, nanoresonators can detect molecules on a narrow bandwidth so that a set of resonators is necessary to identify a molecule fingerprint. Here, we introduce an alternative paradigm and use low quality factor resonators with large radiative losses (over-coupled resonators). The bandwidth enables to detect all absorption lines between 5 and 10 µm, reproducing the molecular absorption spectrum. Counterintuitively, despite a lower quality factor, the system sensitivity is improved and we report a reflectivity variation as large as one percent per nanometer of molecular layer of PMMA. This paves the way to specific identification of molecules. We illustrate the potential of the technique with the detection of the explosive precursor 2,4-dinitrotoluene (DNT). There is a fair agreement with electromagnetic simulations and we also introduce an analytic model of the SEIRA signal obtained in the over-coupling regime.

4.
Nano Lett ; 22(21): 8779-8785, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36190814

RESUMEN

While the integration of nanocrystals as an active medium for optoelectronic devices progresses, light management strategies are becoming required. Over recent years, several photonic structures (plasmons, cavities, mirrors, etc.) have been coupled to nanocrystal films to shape the absorption spectrum, tune the directionality, and so on. Here, we explore a photonic equivalent of the acoustic Helmholtz resonator and propose a design that can easily be fabricated. This geometry combines a strong electromagnetic field magnification and a narrow channel width compatible with efficient charge conduction despite hopping conduction. At 80 K, the device reaches a responsivity above 1 A·W-1 and a detectivity above 1011 Jones (3 µm cutoff) while offering a significantly faster time-response than vertical geometry diodes.

5.
Opt Lett ; 47(17): 4415-4418, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36048667

RESUMEN

In this paper we experimentally demonstrate second-harmonic generation (SHG) enhancement in thin 1D periodic plasmonic nanostructures on GaAs in the infrared spectral range. Due to the properly designed coupling of horizontal Fabry-Perot nanoresonators that occurs inside these structures, the obtained conversion efficiencies go up to the 10-7 W-1 range. Moreover, we demonstrate that the engineering of the plasmonic nanoantenna dimensions on the same GaAs layer can lead to SHG enhancement for pump wavelengths ranging from 2.8 µm to 3.3 µm.

6.
Opt Lett ; 46(6): 1466-1469, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720213

RESUMEN

Metasurfaces able to concentrate light at various wavelengths are promising for enhancing nonlinear interactions. In this Letter, we experimentally demonstrate infrared second-harmonic generation (SHG) by a multi-resonant nanostructure. A 100 GaAs layer embedded in a metal-insulator-metal waveguide is shown to support various localized resonances. One resonance enhances the nonlinear polarization due to the transverse magnetic (TM)-polarized pump wavelength near 3.2µm, while another is set near the TE-polarized generated wavelength (1.6µm). The measured SHG efficiency is higher than 10-9W-1 for pump wavelengths ranging from 2.9 to 3.3µm, which agrees with theoretical computations. This is typically 4 orders of magnitude higher than the equivalent GaAs membrane.

7.
Opt Express ; 28(26): 39595-39605, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379505

RESUMEN

Surface enhanced infrared absorption (SEIRA) spectroscopy and surface plasmon resonance (SPR) make possible, thanks to plasmonics nanoantennas, the detection of low quantities of biological and chemical materials. Here, we investigate the infrared response of 2,4-dinitrotoluene deposited on various arrays of closely arranged metal-insulator-metal (MIM) resonators and experimentally show how the natural dispersion of the complex refractive index leads to an intertwined combination of SEIRA and SPR effect that can be leveraged to identify molecules. They are shown to be efficient for SEIRA spectroscopy and allows detecting of the dispersive explosive material, 2,4-dinitrotoluene. By changing the in-plane parameters, a whole spectral range of absorptions of 2,4-DNT is scanned. These results open the way to the design of sensors based on SEIRA and SPR combined effects, without including a spectrometer.

8.
J Opt Soc Am A Opt Image Sci Vis ; 36(6): 964-974, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158127

RESUMEN

A modal method is developed analytically to investigate the THz optical transmission and reflection of a metallic thin film perforated by a 2D array of rectangular apertures. For subwavelength apertures, this optical model is interpreted in terms of passive electrical circuits, with interface admittances accounting for the THz surface conduction properties of the metallic film. The reactive component of the admittance of the evanescent diffraction cloud is shown to exhibit resonant behavior governed by the shape factors of the array. Interaction of such an electrodynamic resonance with the Rayleigh diffraction orders may alter their standard Fano profiles. Experimental evidence of the resonance is obtained owing to lineshape analysis of transmittance measurements in the THz range on metallic thin films deposited on a dielectric substrate, both above and below the first Wood-Rayleigh anomaly.

9.
Nano Lett ; 16(9): 5358-64, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27525513

RESUMEN

Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T < 275 °C), low-cost, and scalable techniques. Epitaxial c-Si layers are grown by PECVD at 160 °C and transferred on a glass substrate by anodic bonding and mechanical cleavage. A silver back mirror is combined with a front texturation based on an inverted nanopyramid array fabricated by nanoimprint lithography and wet etching. We demonstrate a short-circuit current density of 25.3 mA/cm(2) for an equivalent thickness of only 2.75 µm. External quantum efficiency (EQE) measurements are in very good agreement with FDTD simulations. We infer an optical path enhancement of 10 in the long wavelength range. A simple propagation model reveals that the low photon escape probability of 25% is the key factor in the light trapping mechanism. The main limitations of our current technology and the potential efficiencies achievable with contact optimization are discussed.

10.
Small ; 10(18): 3707-16, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24864008

RESUMEN

The use of peptidic ligands is validated as a generic chemical platform allowing one to finely control the organization in solid phase of semiconductor nanorods originally dispersed in an aqueous media. An original method to generate, on a macroscopic scale and with the desired geometry, three-dimensional supracrystals composed of quantum rods is introduced. In a first step, nanorods are transferred in an aqueous phase thanks to the substitution of the original capping layer by peptidic ligands. Infrared and nuclear magnetic resonance spectroscopy data prove that the exchange is complete; fluorescence spectroscopy demonstrates that the emitter optical properties are not significantly altered; electrophoresis and dynamic light scattering experiments assess the good colloidal stability of the resulting aqueous suspension. In a second step, water evaporation in a microstructured environment yields superstructures with a chosen geometry and in which nanorods obey a smectic B arrangement, as shown by electron microscopy. Incidentally, bulk drying in a capillary tube generates a similar local order, as evidenced by small angle X-ray scattering.


Asunto(s)
Nanotecnología/métodos , Péptidos/química , Puntos Cuánticos , Compuestos de Cadmio/química , Humanos , Ligandos , Luz , Espectroscopía de Resonancia Magnética , Microscopía Electrónica , Microscopía Electrónica de Transmisión , Nanotubos/química , Dispersión de Radiación , Compuestos de Selenio/química , Semiconductores , Espectrometría de Fluorescencia , Sulfuros/química , Agua/química , Rayos X
11.
J Org Chem ; 78(7): 3487-92, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23480268

RESUMEN

A highly efficient crystallization-induced dynamic resolution (CIDR) of trans-Fox (fluorinated oxazolidine) chiral auxiliary is reported. This chiral auxiliary was used for highly diastereoselective (>98% de) electrophilic fluorination of amide enolates. After removal of the chiral auxiliary, highly valuable enantiopure α-fluorocarboxylic acids and ß-fluoroalcohols are obtained.


Asunto(s)
Amidas/síntesis química , Oxazoles/química , Termodinámica , Amidas/química , Cristalización , Estructura Molecular , Estereoisomerismo
12.
Opt Express ; 20(12): 13082-90, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22714335

RESUMEN

We study experimentally and theoretically band-pass filters based on guided-mode resonances in free-standing metal-dielectric structures with subwavelength gratings. A variety of filters are obtained: polarizing filters with 1D gratings, and unpolarized or selective filters with 2D gratings, which are shown to behave as two crossed-1D structures. In either case, a high transmission (up to ≈ 79 %) is demonstrated, which represents an eight-fold enhancement compared to the geometrical transmission of the grating. We also show that the angular sensitivity strongly depends on the rotation axis of the sample. This behavior is explained with a detailed description of the guided-mode transmission mechanism.

13.
ACS Nano ; 6(5): 4137-46, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22497873

RESUMEN

We describe a method of controlled evaporation on a textured substrate for self-assembling and shaping gold-nanorod-based materials. Tridimensional wall features are formed over areas as large as several square millimeters. Furthermore, analyses by small-angle X-ray scattering and scanning electron microscopy techniques demonstrate that colloids are locally ordered as a smectic B phase. Such crystallization is in fact possible because we could finely adjust the nanoparticle charge, knowledge that additionally enables tuning the lattice parameters. In the future, the type of ordered self-assemblies of gold nanorods we have prepared could be used for amplifying optical signals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...