Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 16(10): 2337-2347, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35798939

RESUMEN

Although migrations are essential for soil microorganisms to exploit scarce and heterogeneously distributed resources, bacterial mobility in soil remains poorly studied due to experimental limitations. In this study, time-lapse images collected using live microscopy techniques captured collective and coordinated groups of B. subtilis cells exhibiting "crowd movement". Groups of B. subtilis cells moved through transparent soil (nafion polymer with particle size resembling sand) toward plant roots and re-arranged dynamically around root tips in the form of elongating and retracting "flocks" resembling collective behaviour usually associated with higher organisms (e.g., bird flocks or fish schools). Genetic analysis reveals B. subtilis flocks are likely driven by the diffusion of extracellular signalling molecules (e.g., chemotaxis, quorum sensing) and may be impacted by the physical obstacles and hydrodynamics encountered in the soil like environment. Our findings advance understanding of bacterial migration through soil matrices and expand known behaviours for coordinated bacterial movement.


Asunto(s)
Arena , Suelo , Bacterias/genética , Polímeros , Percepción de Quorum
2.
Curr Opin Genet Dev ; 51: 18-25, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29674100

RESUMEN

Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments.


Asunto(s)
Fenómenos Mecánicos , Raíces de Plantas/crecimiento & desarrollo , Suelo , Heterogeneidad Genética , Raíces de Plantas/genética , Rizosfera
3.
J Theor Biol ; 447: 84-97, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29559229

RESUMEN

Discoveries on the genetics of resource acquisition efficiency are limited by the ability to measure plant roots in sufficient number and with adequate genotypic variability. This paper presents a root phenotyping study that explores ways to combine live imaging and computer algorithms for model-based extraction of root growth parameters. The study is based on a subset of barley Recombinant Chromosome Substitution Lines (RCSLs) and a combinatorial approach was designed for fast identification of the regions of the genome that contribute the most to variations in root system architecture (RSA). Results showed there was a strong genotypic variation in root growth parameters within the set of genotypes studied. The chromosomal regions associated with primary root growth differed from the regions of the genome associated with changes in lateral root growth. The concepts presented here are discussed in the context of identifying root QTL and its potential to assist breeding for novel crops with improved root systems.


Asunto(s)
Hordeum/anatomía & histología , Fitomejoramiento/métodos , Raíces de Plantas/crecimiento & desarrollo , Cromosomas/genética , Genoma de Planta , Genotipo , Fenotipo , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo
4.
BMC Plant Biol ; 16(1): 214, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27716103

RESUMEN

BACKGROUND: Mineral nutrient uptake and utilisation by plants are controlled by many traits relating to root morphology, ion transport, sequestration and translocation. The aims of this study were to determine the phenotypic diversity in root morphology and leaf and seed mineral composition of a polyploid crop species, Brassica napus L., and how these traits relate to crop habit. Traits were quantified in a diversity panel of up to 387 genotypes: 163 winter, 127 spring, and seven semiwinter oilseed rape (OSR) habits, 35 swede, 15 winter fodder, and 40 exotic/unspecified habits. Root traits of 14 d old seedlings were measured in a 'pouch and wick' system (n = ~24 replicates per genotype). The mineral composition of 3-6 rosette-stage leaves, and mature seeds, was determined on compost-grown plants from a designed experiment (n = 5) by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS: Seed size explained a large proportion of the variation in root length. Winter OSR and fodder habits had longer primary and lateral roots than spring OSR habits, with generally lower mineral concentrations. A comparison of the ratios of elements in leaf and seed parts revealed differences in translocation processes between crop habits, including those likely to be associated with crop-selection for OSR seeds with lower sulphur-containing glucosinolates. Combining root, leaf and seed traits in a discriminant analysis provided the most accurate characterisation of crop habit, illustrating the interdependence of plant tissues. CONCLUSIONS: High-throughput morphological and composition phenotyping reveals complex interrelationships between mineral acquisition and accumulation linked to genetic control within and between crop types (habits) in B. napus. Despite its recent genetic ancestry (<10 ky), root morphology, and leaf and seed composition traits could potentially be used in crop improvement, if suitable markers can be identified and if these correspond with suitable agronomy and quality traits.


Asunto(s)
Brassica napus/anatomía & histología , Brassica napus/química , Fenotipo , Brassica napus/genética , Productos Agrícolas , Genotipo , Hojas de la Planta/química , Raíces de Plantas/anatomía & histología , Semillas/química
5.
Ann Bot ; 118(4): 655-665, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27052342

RESUMEN

Background and Aims Root traits can be selected for crop improvement. Techniques such as soil excavations can be used to screen root traits in the field, but are limited to genotypes that are well-adapted to field conditions. The aim of this study was to compare a low-cost, high-throughput root phenotyping (HTP) technique in a controlled environment with field performance, using oilseed rape (OSR; Brassica napus) varieties. Methods Primary root length (PRL), lateral root length and lateral root density (LRD) were measured on 14-d-old seedlings of elite OSR varieties (n = 32) using a 'pouch and wick' HTP system (∼40 replicates). Six field experiments were conducted using the same varieties at two UK sites each year for 3 years. Plants were excavated at the 6- to 8-leaf stage for general vigour assessments of roots and shoots in all six experiments, and final seed yield was determined. Leaves were sampled for mineral composition from one of the field experiments. Key Results Seedling PRL in the HTP system correlated with seed yield in four out of six (r = 0·50, 0·50, 0·33, 0·49; P < 0·05) and with emergence in three out of five (r = 0·59, 0·22, 0·49; P < 0·05) field experiments. Seedling LRD correlated positively with leaf concentrations of some minerals, e.g. calcium (r = 0·46; P < 0·01) and zinc (r = 0·58; P < 0·001), but did not correlate with emergence, general early vigour or yield in the field. Conclusions Associations between PRL and field performance are generally related to early vigour. These root traits might therefore be of limited additional selection value, given that vigour can be measured easily on shoots/canopies. In contrast, LRD cannot be assessed easily in the field and, if LRD can improve nutrient uptake, then it may be possible to use HTP systems to screen this trait in both elite and more genetically diverse, non-field-adapted OSR.

6.
Plant Cell Environ ; 38(7): 1213-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25211059

RESUMEN

The morphology of roots and root systems influences the efficiency by which plants acquire nutrients and water, anchor themselves and provide stability to the surrounding soil. Plant genotype and the biotic and abiotic environment significantly influence root morphology, growth and ultimately crop yield. The challenge for researchers interested in phenotyping root systems is, therefore, not just to measure roots and link their phenotype to the plant genotype, but also to understand how the growth of roots is influenced by their environment. This review discusses progress in quantifying root system parameters (e.g. in terms of size, shape and dynamics) using imaging and image analysis technologies and also discusses their potential for providing a better understanding of root:soil interactions. Significant progress has been made in image acquisition techniques, however trade-offs exist between sample throughput, sample size, image resolution and information gained. All of these factors impact on downstream image analysis processes. While there have been significant advances in computation power, limitations still exist in statistical processes involved in image analysis. Utilizing and combining different imaging systems, integrating measurements and image analysis where possible, and amalgamating data will allow researchers to gain a better understanding of root:soil interactions.


Asunto(s)
Raíces de Plantas/citología , Rizosfera , Genotipo , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Programas Informáticos , Suelo , Agua/metabolismo
7.
Ann Bot ; 113(3): 555-63, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284818

RESUMEN

BACKGROUND AND AIMS: Shining a laser onto biological material produces light speckles termed biospeckles. Patterns of biospeckle activity reflect changes in cell biochemistry, developmental processes and responses to the environment. The aim of this work was to develop methods to investigate the biospeckle activity in roots and to characterize the distribution of its intensity and response to thigmostimuli. METHODS: Biospeckle activity in roots of Zea mays, and also Jatropha curcas and Citrus limonia, was imaged live and in situ using a portable laser and a digital microscope with a spatial resolution of 10 µm per pixel and the ability to capture images every 0.080 s. A procedure incorporating a Fujii algorithm, image restoration using median and Gaussian filters, image segmentation using maximum-entropy threshold methods and the extraction of features using a tracing algorithm followed by spline fitting were developed to obtain quantitative information from images of biospeckle activity. A wavelet transform algorithm was used for spectral decomposition of biospeckle activity and generalized additive models were used to attribute statistical significance to changes in patterns of biospeckle activity. KEY RESULTS: The intensity of biospeckle activity was greatest close to the root apex. Higher frequencies (3-6 Hz) contributed most to the total intensity of biospeckle activity. When a root encountered an obstacle, the intensity of biospeckle activity decreased abruptly throughout the root system. The response became attenuated with repeated thigmostimuli. CONCLUSIONS: The data suggest that at least one component of root biospeckle activity resulted from a biological process, which is located in the zone of cell division and responds to thigmostimuli. However, neither individual cell division events nor root elongation is likely to be responsible for the patterns of biospeckle activity.


Asunto(s)
Citrus/citología , Procesamiento de Imagen Asistido por Computador/métodos , Jatropha/citología , Rayos Láser , Zea mays/citología , Algoritmos , Citrus/metabolismo , Citrus/efectos de la radiación , Jatropha/metabolismo , Jatropha/efectos de la radiación , Microscopía , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Dispersión de Radiación , Zea mays/metabolismo , Zea mays/efectos de la radiación
8.
Ann Bot ; 112(2): 317-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23172412

RESUMEN

BACKGROUND: Phosphorus (P) often limits crop production and is frequently applied as fertilizer; however, supplies of quality rock phosphate for fertilizer production are diminishing. Plants have evolved many mechanisms to increase their P acquisition, and an understanding of these traits could result in improved long-term sustainability of agriculture. This Viewpoint focuses on the potential benefits of root hairs to sustainable production. SCOPE: First the various root-related traits that could be deployed to improve agricultural sustainability are catalogued, and their potential costs and benefits to the plant are discussed. A novel mathematical model describing the effects of length, density and longevity of root hairs on P acquisition is developed, and the relative benefits of these three root-hair traits to plant P nutrition are calculated. Insights from this model are combined with experimental data to assess the relative benefits of a range of root hair ideotypes for sustainability of agriculture. CONCLUSIONS: A cost-benefit analysis of root traits suggests that root hairs have the greatest potential for P acquisition relative to their cost of production. The novel modelling of root hair development indicates that the greatest gains in P-uptake efficiency are likely to be made through increased length and longevity of root hairs rather than by increasing their density. Synthesizing this information with that from published experiments we formulate six potential ideotypes to improve crop P acquisition. These combine appropriate root hair phenotypes with architectural, anatomical and biochemical traits, such that more root-hair zones are produced in surface soils, where P resources are found, on roots which are metabolically cheap to construct and maintain, and that release more P-mobilizing exudates. These ideotypes could be used to inform breeding programmes to enhance agricultural sustainability.


Asunto(s)
Modelos Teóricos , Fósforo/metabolismo , Raíces de Plantas/anatomía & histología , Agricultura , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Hordeum/anatomía & histología , Hordeum/fisiología , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Rizosfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...