Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3311-3324, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38212130

RESUMEN

Species transport in thin-film Nafion heavily influences proton-exchange membrane (PEMFC) performance, particularly in low-platinum-loaded cells. Literature suggests that phase-segregated nanostructures in hydrated Nafion thin films can reduce species mobility and increase transport losses in cathode catalyst layers. However, these structures have primarily been observed at silicon-Nafion interfaces rather than at more relevant material (e.g., Pt and carbon black) interfaces. In this work, we use neutron reflectometry and X-ray photoelectron spectroscopy to investigate carbon-supported Nafion thin films. Measurements were taken in humidified environments for Nafion thin films (≈30-80 nm) on four different carbon substrates. Results show a variety of interfacial morphologies in carbon-supported Nafion. Differences in carbon samples' roughness, surface chemistry, and hydrophilicity suggest that thin-film Nafion phase segregation is impacted by multiple substrate characteristics. For instance, hydrophilic substrates with smooth surfaces correlate with a high likelihood of lamellar phase segregation parallel to the substrate. When present, the lamellar structures are less pronounced than those observed at silicon oxide interfaces. Local oscillations in water volume fraction for the lamellae were less severe, and the lamellae were thinner and were not observed when the water was removed, all in contrast to Nafion-silicon interfaces. For hydrophobic and rough samples, phase segregation was more isotropic rather than lamellar. Results suggest that Nafion in PEMFC catalyst layers is less influenced by the interface compared with thin films on silicon. Despite this, our results demonstrate that neutron reflectometry measurements of silicon-Nafion interfaces are valuable for PEMFC performance predictions, as water uptake in the majority Nafion layers (i.e., the uniformly hydrated region beyond the lamellar region) trends similarly with thickness, regardless of support material.

2.
ACS Appl Mater Interfaces ; 15(2): 2832-2842, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36598862

RESUMEN

The solid electrolyte interface/interphase (SEI) is of great importance to the viable operation of lithium-ion batteries. In the present work, the interface between a tungsten oxide electrode and an electrolyte solution consisting of LiPF6 in a deuterated ethylene carbonate/diethyl carbonate solvent was characterized with in situ neutron reflectometry (NR) at a series of applied electrochemical potentials. NR data were fit to yield neutron scattering length density (SLD) depth profiles in the surface normal direction, from which composition depth profiles were inferred. The goals of this work were to characterize SEI formation on a model transition-metal oxide, an example of a conversion electrode, to characterize the lithiation of WO3, and to help interpret the results of an earlier study of tungsten electrodes without an intentionally grown surface oxide. The WO3 electrode was produced by thermal oxidation of a W thin film. Co-analysis of NR and X-ray reflectivity data indicated that the stoichiometry of the thermal oxide was WO3. As the electrode was polarized to progressively more reducing potentials, starting from open circuit and down to +0.25 V versus Li/Li+, the layer that was originally WO3 expanded and increased in lithium content. The reduced electrode consisted of two to three layers: an inner layer (the evolving conversion electrode) which may have been mixed W and Li2O and unreacted WO3 or LixWO3, a layer rich in protons and/or lithium, possibly corresponding to LiOH or LiH (the inner SEI), and an outermost layer adjacent to the solution with an SLD close to that of the solution, possibly consisting of lower SLD species with solution-filled porosity or deuteron-rich species derived from the solvents (the outer SEI), though the presence of this layer was tenuous. For the steps in the direction of more oxidizing potentials, the evolution of the layer structure was qualitatively the reverse of that seen when stepping toward more negative potentials, though with hysteresis. The SLD gradient suggested that the reaction was not limited by diffusion within the film. No clear phase boundary was evident in the evolving conversion electrode.

3.
ACS Appl Mater Interfaces ; 15(1): 751-760, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36580372

RESUMEN

Lithium garnet Li7La3Zr2O12 (LLZO), with high ionic conductivity and chemical stability against a Li metal anode, is considered one of the most promising solid electrolytes for lithium-sulfur batteries. However, an infinite charge time resulting in low capacity has been observed in Li-S cells using Ta-doped LLZO (Ta-LLZO) as a solid electrolyte. It was observed that this cell failure is correlated with lanthanum segregation to the surface of Ta-LLZO that reacts with a sulfur cathode. We demonstrated this correlation by using lanthanum excess and lanthanum deficient Ta-LLZO as the solid electrolyte in Li-S cells. To resolve this challenge, we physically separated the sulfur cathode and LLZO using a poly(ethylene oxide) (PEO)-based buffer interlayer. With a thin bilayer of LLZO and the stabilized sulfur cathode/LLZO interface, the hybridized Li-S batteries achieved a high initial discharge capacity of 1307 mA h/g corresponding to an energy density of 639 W h/L and 134 W h/kg under a high current density of 0.2 mA/cm2 at room temperature without any indication of a polysulfide shuttle. By simply reducing the LLZO dense layer thickness to 10 µm as we have demonstrated before, a significantly higher energy density of 1308 W h/L and 257 W h/kg is achievable. X-ray diffraction and X-ray photoelectron spectroscopy indicate that the PEO-based interlayer, which physically separates the sulfur cathode and LLZO, is both chemically and electrochemically stable with LLZO. In addition, the PEO-based interlayer can adapt to the stress/strain associated with sulfur volume expansion during lithiation.

4.
ACS Appl Mater Interfaces ; 13(8): 9919-9931, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33616383

RESUMEN

Electrode-electrolyte interfaces (EEIs) affect the rate capability, cycling stability, and thermal safety of lithium-ion batteries (LIBs). Designing stable EEIs with fast Li+ transport is crucial for developing advanced LIBs. Here, we study Li+ kinetics at EEIs tailored by three nanoscale polymer thin films via chemical vapor deposition (CVD) polymerization. Small binding energy with Li+ and the presence of sufficient binding sites for Li+ allow poly(3,4-ethylenedioxythiophene) (PEDOT) based artificial coatings to enable fast charging of LiCoO2. Operando synchrotron X-ray diffraction experiments suggest that the superior Li+ transport property in PEDOT further improves current homogeneity in the LiCoO2 electrode during cycling. PEDOT also forms chemical bonds with LiCoO2, which reduces Co dissolution and inhibits electrolyte decomposition. As a result, the LiCoO2 4.5 V cycle life tested at C/2 increases over 1700% after PEDOT coating. In comparison, the other two polymer coatings show undesirable effects on LiCoO2 performance. These insights provide us with rules for selecting/designing polymers to engineer EEIs in advanced LIBs.

6.
Soft Matter ; 16(33): 7676-7684, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32804181

RESUMEN

We reveal the assembly of magnetite nanoparticles of sizes 5 nm, 15 nm and 25 nm from dilute water-based ferrofluids onto an amorphous magnetic template with out-of-plane anisotropy. From neutron reflectometry experiments we extract density profiles and show that the particles self-assemble into layers at the magnetic surface. The layers are extremely stable against cleaning and rinsing of the substrate. The density of the layers is determined by and increases with the remanent magnetic moment of the particles.

7.
Nanomaterials (Basel) ; 10(6)2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32599954

RESUMEN

In this article we review the process by which magnetite nanoparticles self-assemble onto solid surfaces. The focus is on neutron reflectometry studies providing information on the density and magnetization depth profiles of buried interfaces. Specific attention is given to the near-interface "wetting" layer and to examples of magnetite nanoparticles on a hydrophilic silicon crystal, one coated with (3-Aminopropyl)triethoxysilane, and finally, one with a magnetic film with out-of-plane magnetization.

8.
ACS Appl Mater Interfaces ; 11(50): 47553-47563, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31815415

RESUMEN

Tungsten, a non-Li-intercalating material, was used as a platform to study solid-electrolyte interface/interphase (SEI) formation in lithium hexafluorphosphate in mixed diethyl carbonate (DEC)/ethylene carbonate electrolyte solutions using in situ neutron reflectometry (NR). A NR measurement determines the neutron scattering length density (SLD)-depth profile, from which a composition-depth profile can be inferred. Isotopic labeling/contrast variation measurements were conducted using a series of three electrolyte solutions: one with both solvents deuterated, one with neither deuterated, and another with only DEC deuterated. A two-layer SEI formed upon polarization to +0.25 V vs Li/Li+. Insensitivity of the inner SEI layer to solvent deuteration suggested limited incorporation of hydrogen atoms from the solvent molecules. Its low SLD indicates that Li2O could be a major constituent. The outer SEI layer SLD scaled with that of the solution, indicating that it either had solution-filled porosity, incorporated hydrogen atoms from the solvent, or both. Returning the electrode to +2.65 V removed lithium from both surface layers, though the effect was more pronounced for the inner layer. Potential cycling had the effect of increasing the solution-derived species content in the inner SEI and decreased the contrast between the inner and outer layers, possibly indicating intermixing of the layers.

9.
Phys Rev Lett ; 123(1): 016101, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31386422

RESUMEN

We report the detection and quantification of nuclear spin incoherent scattering from hydrogen occupying interstitial sites in a thin film of vanadium. The neutron wave field is enhanced in a quantum resonator with magnetically switchable boundaries. Our results provide a pathway for the study of dynamics at surfaces and in ultrathin films using inelastic and/or quasielastic neutron scattering methods.

10.
Macromolecules ; 52(24)2019.
Artículo en Inglés | MEDLINE | ID: mdl-33060868

RESUMEN

The optimization of ionic conductivity and lithium-ion battery stability can be achieved by independently tuning the ion transport and mechanical robustness of block polymer (BP) electrolytes. However, the ionic conductivity of BP electrolytes is inherently limited by the covalent attachment of the ionically conductive block to the mechanically robust block, among other factors. Herein, the BP electrolyte polystyrene-block-poly(oligo-oxyethylene methacrylate) [PS-b-POEM] was blended with POEM homopolymers of varying molecular weights. The incorporation of a higher molecular weight homopolymer additive (α > 1 state) promoted a "dry brush-like" homopolymer distribution within the BP self-assembly and led to higher lithium salt concentrations in the more mobile homopolymer-rich region, increasing overall ionic conductivity relative to the "wet brush-like" (α < 1 state) and unblended composites, where α is the molecular weight ratio between the POEM homopolymer and the POEM block in the copolymer. Neutron and X-ray reflectometry (NR and XRR, respectively) provided additional details on the lithium salt and polymer distributions. From XRR, the α > 1 blends showed increased interfacial widths in comparison to their BP (unblended) or α < 1 counterparts because of the more central distribution of the homopolymer. This result, paired with NR data that suggested even salt concentrations across the POEM domains, implied that there was a higher salt concentration in the homopolymer POEM-rich regions in the dry brush blend than in the wet brush blend. Furthermore, using 7Li solid-state nuclear magnetic resonance spectroscopy, we found a temperature corresponding to a transition in lithium mobility (T Li mobility) that was a function of blend type. T Li mobility was found to be 39 °C above T g in all cases. Interestingly, the ionic conductivity of the blended BPs was highest in the α > 1 composites, even though these composites had higher T gs than the α < 1 composites, demonstrating that homopolymer-rich conducting pathways formed in the α > 1 assemblies had a larger influence on conductivity than the greater lithium ion mobility in the α < 1 blends.

11.
Artículo en Inglés | MEDLINE | ID: mdl-32831460

RESUMEN

The solid electrolyte interphase (SEI) remains a central challenge to lithium-ion battery durability, in part due to poor understanding of the basic chemistry responsible for its formation and evolution. In this study, the SEI on a non-intercalating tungsten anode is measured by operando neutron reflectometry and quartz crystal microbalance. A dual-layer SEI is observed, with a 3.7 nm thick inner layer and a 15.4 nm thick outer layer. Such structures have been proposed in the literature, but have not been definitively observed via neutron reflectometry. The SEI mass per area was 1207.2 ng/cm2, and QCM provides insight into the SEI formation dynamics during a negative-going voltage sweep and its evolution over multiple cycles. Monte Carlo simulations identify SEI chemical compositions consistent with the combined measurements. The results are consistent with a primarily inorganic, dense inner layer and a primarily organic, porous outer layer, directly confirming structures proposed in the literature. Further refinement of techniques presented herein, coupled with additional complementary measurements and simulations, can give quantitative insight into SEI formation and evolution as a function of battery materials and cycling conditions. This, in turn, will enable scientifically-guided design of durable, conductive SEI layers for Li-ion batteries for a range of applications.

12.
Nat Mater ; 17(6): 543-549, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29662160

RESUMEN

Metallic zinc (Zn) has been regarded as an ideal anode material for aqueous batteries because of its high theoretical capacity (820 mA h g-1), low potential (-0.762 V versus the standard hydrogen electrode), high abundance, low toxicity and intrinsic safety. However, aqueous Zn chemistry persistently suffers from irreversibility issues, as exemplified by its low coulombic efficiency (CE) and dendrite growth during plating/ stripping, and sustained water consumption. In this work, we demonstrate that an aqueous electrolyte based on Zn and lithium salts at high concentrations is a very effective way to address these issues. This unique electrolyte not only enables dendrite-free Zn plating/stripping at nearly 100% CE, but also retains water in the open atmosphere, which makes hermetic cell configurations optional. These merits bring unprecedented flexibility and reversibility to Zn batteries using either LiMn2O4 or O2 cathodes-the former deliver 180 W h kg-1 while retaining 80% capacity for >4,000 cycles, and the latter deliver 300 W h kg-1 (1,000 W h kg-1 based on the cathode) for >200 cycles.

13.
ACS Appl Mater Interfaces ; 10(5): 5050-5060, 2018 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-29299907

RESUMEN

This article describes the three-dimensional self-assembly of monodisperse colloidal magnetite nanoparticles (NPs) from a dilute water-based ferrofluid onto a silicon surface and the dependence of the resultant magnetic structure on the applied field. The NPs assemble into close-packed layers on the surface followed by more loosely packed ones. The magnetic field-dependent magnetization of the individual NP layers depends on both the rotational freedom of the layer and the magnetization of the adjacent layers. For layers in which the NPs are more free to rotate, the easy axis of the NP can readily orient along the field direction. In more dense packing, free rotation of the NPs is hampered, and the NP ensembles likely build up quasi-domain states to minimize energy, which leads to lower magnetization in those layers. Detailed analysis of polarized neutron reflectometry data together with model calculations of the arrangement of the NPs within the layers and input from small-angle scattering measurements provide full characterization of the core/shell NP dimensions, degree of chaining, arrangement of the NPs within the different layers, and magnetization depth profile.

14.
Nature ; 553(7686): 68-72, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258293

RESUMEN

Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.


Asunto(s)
Compuestos de Calcio/química , Electricidad , Níquel/química , Compuestos Organometálicos/química , Óxidos/química , Cloruro de Sodio/química , Titanio/química , Agua/química , Organismos Acuáticos , Concentración de Iones de Hidrógeno , Transición de Fase , Protones , Navíos , Sincrotrones , Temperatura
15.
ACS Nano ; 11(10): 10462-10471, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-29016112

RESUMEN

Using molecular dynamics simulations, small-angle neutron scattering, and a variety of spectroscopic techniques, we evaluated the ion solvation and transport behaviors in aqueous electrolytes containing bis(trifluoromethanesulfonyl)imide. We discovered that, at high salt concentrations (from 10 to 21 mol/kg), a disproportion of cation solvation occurs, leading to a liquid structure of heterogeneous domains with a characteristic length scale of 1 to 2 nm. This unusual nano-heterogeneity effectively decouples cations from the Coulombic traps of anions and provides a 3D percolating lithium-water network, via which 40% of the lithium cations are liberated for fast ion transport even in concentration ranges traditionally considered too viscous. Due to such percolation networks, superconcentrated aqueous electrolytes are characterized by a high lithium-transference number (0.73), which is key to supporting an assortment of battery chemistries at high rate. The in-depth understanding of this transport mechanism establishes guiding principles to the tailored design of future superconcentrated electrolyte systems.


Asunto(s)
Electrólitos/química , Hidrocarburos Fluorados/química , Imidas/química , Litio/química , Simulación de Dinámica Molecular , Nanopartículas/química , Cationes/química , Transporte Iónico , Estructura Molecular , Difracción de Neutrones , Dispersión del Ángulo Pequeño , Espectroscopía Infrarroja por Transformada de Fourier
16.
Soft Matter ; 11(23): 4695-704, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25971712

RESUMEN

Neutron reflectometry was used to study the assembly of magnetite nanoparticles in a water-based ferrofluid close to a silicon surface. Under three conditions, static, under shear and with a magnetic field, the depth profile is extracted. The particles have an average diameter of 11 nm and a volume density of 5% in a D2O-H2O mixture. They are surrounded by a 4 nm thick bilayer of carboxylic acid for steric repulsion. The reflectivity data were fitted to a model using a least square routine based on the Parratt formalism. From the scattering length density depth profiles the following behavior is concluded: the fits indicate that excess carboxylic acid covers the silicon surface and almost eliminates the water in the densely packed wetting layer that forms close to the silicon surface. Under constant shear the wetting layer persists but a depletion layer forms between the wetting layer and the moving ferrofluid. Once the flow is stopped, the wetting layer becomes more pronounced with dense packing and is accompanied by a looser packed second layer. In the case of an applied magnetic field the prolate particles experience a torque and align with their long axes along the silicon surface which leads to a higher particle density.

17.
Soft Matter ; 10(31): 5763-76, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-24981163

RESUMEN

Neutron reflectometry analysis methods for under-determined, multi-layered structures are developed and used to determine the composition depth profile in cases where the structure is not known a priori. These methods, including statistical methods, sophisticated fitting routines, and coupling multiple data sets, are applied to hydrated and dehydrated Nafion nano-scaled films with thicknesses comparable to those found coating electrode particles in fuel cell catalyst layers. These results confirm the lamellar structure previously observed on hydrophilic substrates, and demonstrate that for hydrated films they can accurately be described as layers rich in both water and sulfonate groups alternating with water-poor layers containing an excess of fluorocarbon groups. The thickness of these layers increases slightly and the amplitude of the water volume fraction oscillation exponentially decreases away from the hydrophilic interface. For dehydrated films, the composition oscillations die out more rapidly. The Nafion-SiO2 substrate interface contains a partial monolayer of sulfonate groups bonded to the substrate and a large excess of water compared to that expected by the water-to-sulfonate ratio, λ, observed throughout the rest of the film. Films that were made thin enough to truncate this lamellar region showed a depth profile nearly identical to thicker films, indicating that there are no confinement or surface effects altering the structure. Comparing the SLD profile measured for films dried at 60 °C to modeled composition profiles derived by removing water from the hydrated lamellae suggests incomplete re-mixing of the polymer groups upon dehydration, indicated limited polymer mobility in these Nafion thin films.

18.
J Phys Condens Matter ; 24(25): 255306, 2012 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-22652824

RESUMEN

The distribution of hydrogen in Nb/Ta superlattices has been investigated by combined neutron reflectivity and x-ray scattering. We provide evidence to support that strain modulations determined with x-ray diffraction can be interpreted as modulations in hydrogen content. We show that the hydrogen concentration is modulated and favors Nb, in agreement with previous studies. We measure the concentration directly using neutron reflectivity and demonstrate no detectable change in the distribution of hydrogen with temperature, in stark contrast to previous studies.

19.
J Colloid Interface Sci ; 370(1): 192-200, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22244865

RESUMEN

Oxide-supported phospholipid bilayers (SPBs) used as biomimetic membranes are significant for a broad range of applications including improvement of biomedical devices and biosensors, and in understanding biomineralization processes and the possible role of mineral surfaces in the evolution of pre-biotic membranes. Continuous-coverage and/or stacked SPBs retain properties (e.g., fluidity) more similar to native biological membranes, which is desirable for most applications. Using neutron reflectivity, we examined the role of oxide surface charge (by varying pH and ionic strength) and of divalent Ca(2+) in controlling surface coverage and potential stacking of dipalmitoylphosphatidylcholine (DPPC) bilayers on the (11 ̅20) face of sapphire (α-Al(2)O(3)). Nearly full bilayers were formed at low to neutral pH, when the sapphire surface is positively charged, and at low ionic strength (I=15 mM NaCl). Coverage decreased at higher pH, close to the isoelectric point of sapphire, and also at high I≥210 mM, or with addition of 2mM Ca(2+). The latter two effects are not additive, suggesting that Ca(2+) mitigates the effect of higher I. These trends agree with previous results for phospholipid adsorption on α-Al(2)O(3) particles determined by adsorption isotherms and on single-crystal (10 ̅10) sapphire by atomic force microscopy, suggesting consistency of oxide surface chemistry-dependent effects across experimental techniques.


Asunto(s)
Óxido de Aluminio/química , Membrana Dobles de Lípidos/química , Difracción de Neutrones/métodos , Óxidos/química , Fosfolípidos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Adsorción , Calcio , Cationes Bivalentes , Concentración de Iones de Hidrógeno , Concentración Osmolar , Dispersión del Ángulo Pequeño , Propiedades de Superficie
20.
Rev Sci Instrum ; 77(7): 74301-7430111, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21892232

RESUMEN

An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å(-1). A detailed description of this flexible instrument and its performance characteristics in various operating modes are given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...