Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38936361

RESUMEN

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.

2.
ACS Synth Biol ; 13(6): 1851-1865, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787439

RESUMEN

Saccharomyces boulardii (Sb) is an emerging probiotic chassis for delivering biomolecules to the mammalian gut, offering unique advantages as the only eukaryotic probiotic. However, precise control over gene expression and gut residence time in Sb have remained challenging. To address this, we developed five ligand-responsive gene expression systems and repaired galactose metabolism in Sb, enabling inducible gene expression in this strain. Engineering these systems allowed us to construct AND logic gates, control the surface display of proteins, and turn on protein production in the mouse gut in response to dietary sugar. Additionally, repairing galactose metabolism expanded Sb's habitat within the intestines and resulted in galactose-responsive control over gut residence time. This work opens new avenues for precise dosing of therapeutics by Sb via control over its in vivo gene expression levels and localization within the gastrointestinal tract.


Asunto(s)
Galactosa , Probióticos , Saccharomyces boulardii , Animales , Ratones , Galactosa/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Dieta
3.
Commun Biol ; 6(1): 878, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37634026

RESUMEN

Infections by Clostridioides difficile, a bacterium that targets the large intestine (colon), impact a large number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can be delivered to the gut and inhibit the biocatalytic activity of these toxins represent a promising therapeutic strategy to prevent and treat C. diff. infection. We describe an approach that combines a Peptide Binding Design (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in colon epithelial cells. One peptide, SA1, is found to block TcdA toxicity in primary-derived human colon (large intestinal) epithelial cells. SA1 binds TcdA with a KD of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR).


Asunto(s)
Clostridioides difficile , Humanos , Colon , Algoritmos , Biocatálisis , Péptidos/farmacología
4.
Microb Cell Fact ; 22(1): 109, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37287064

RESUMEN

The probiotic yeast Saccharomyces boulardii (Sb) is a promising chassis to deliver therapeutic proteins to the gut due to Sb's innate therapeutic properties, resistance to phage and antibiotics, and high protein secretion capacity. To maintain therapeutic efficacy in the context of challenges such as washout, low rates of diffusion, weak target binding, and/or high rates of proteolysis, it is desirable to engineer Sb strains with enhanced levels of protein secretion. In this work, we explored genetic modifications in both cis- (i.e. to the expression cassette of the secreted protein) and trans- (i.e. to the Sb genome) that enhance Sb's ability to secrete proteins, taking a Clostridioides difficile Toxin A neutralizing peptide (NPA) as our model therapeutic. First, by modulating the copy number of the NPA expression cassette, we found NPA concentrations in the supernatant could be varied by sixfold (76-458 mg/L) in microbioreactor fermentations. In the context of high NPA copy number, we found a previously-developed collection of native and synthetic secretion signals could further tune NPA secretion between 121 and 463 mg/L. Then, guided by prior knowledge of S. cerevisiae's secretion mechanisms, we generated a library of homozygous single gene deletion strains, the most productive of which achieved 2297 mg/L secretory production of NPA. We then expanded on this library by performing combinatorial gene deletions, supplemented by proteomics experiments. We ultimately constructed a quadruple protease-deficient Sb strain that produces 5045 mg/L secretory NPA, an improvement of > tenfold over wild-type Sb. Overall, this work systematically explores a broad collection of engineering strategies to improve protein secretion in Sb and highlights the ability of proteomics to highlight under-explored mediators of this process. In doing so, we created a set of probiotic strains that are capable of delivering a wide range of protein titers and therefore furthers the ability of Sb to deliver therapeutics to the gut and other settings to which it is adapted.


Asunto(s)
Probióticos , Saccharomyces boulardii , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces boulardii/genética , Saccharomyces boulardii/metabolismo , Saccharomyces/genética , Saccharomyces/metabolismo , Probióticos/metabolismo , Endopeptidasas/metabolismo
5.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36711911

RESUMEN

Clostridioides difficile ( C. diff .) is a bacterium that causes severe diarrhea and inflammation of the colon. The pathogenicity of C. diff . infection is derived from two major toxins, toxins A (TcdA) and B (TcdB). Peptide inhibitors that can be delivered to the gut to inactivate these toxins are an attractive therapeutic strategy. In this work, we present a new approach that combines a pep tide b inding d esign algorithm (PepBD), molecular-level simulations, rapid screening of candidate peptides for toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block the glucosyltransferase activity of TcdA by targeting its glucosyltransferase domain (GTD). Using PepBD and explicit-solvent molecular dynamics simulations, we identified seven candidate peptides, SA1-SA7. These peptides were selected for specific TcdA GTD binding through a custom solid-phase peptide screening system, which eliminated the weaker inhibitors SA5-SA7. The efficacies of SA1-SA4 were then tested using a trans-epithelial electrical resistance (TEER) assay on monolayers of the human gut epithelial culture model. One peptide, SA1, was found to block TcdA toxicity in primary-derived human jejunum (small intestinal) and colon (large intestinal) epithelial cells. SA1 bound TcdA with a K D of 56.1 ± 29.8 nM as measured by surface plasmon resonance (SPR). Significance Statement: Infections by Clostridioides difficile , a bacterium that targets the large intestine (colon), impact a significant number of people worldwide. Bacterial colonization is mediated by two exotoxins: toxins A and B. Short peptides that can inhibit the biocatalytic activity of these toxins represent a promising strategy to prevent and treat C. diff . infection. We describe an approach that combines a Peptide B inding D esign (PepBD) algorithm, molecular-level simulations, a rapid screening assay to evaluate peptide:toxin binding, a primary human cell-based assay, and surface plasmon resonance (SPR) measurements to develop peptide inhibitors that block Toxin A in small intestinal and colon epithelial cells. Importantly, our designed peptide, SA1, bound toxin A with nanomolar affinity and blocked toxicity in colon cells.

6.
Nat Commun ; 13(1): 6201, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36261657

RESUMEN

G protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes. From this we demonstrate mating between haploid cells armed with hGPCRs and endogenous biosynthesis of their cognate ligands. Furthermore, we devise a ligand-free screening strategy for hGPCR compatibility with the yeast mating pathway and enable hGPCR-signaling in the probiotic yeast Saccharomyces boulardii. Combined, our findings enable new means to study mating, hGPCR-signaling, and cell-cell communication in a model eukaryote and yeast probiotics.


Asunto(s)
Probióticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Reproducción/genética , Receptores Acoplados a Proteínas G/metabolismo , Feromonas/metabolismo , Receptores de Superficie Celular/metabolismo , Diferenciación Celular , Comunicación Celular , Ligandos
7.
Trends Biotechnol ; 40(3): 354-369, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34481657

RESUMEN

Genetically engineered microbes that secrete therapeutics, sense and respond to external environments, and/or target specific sites in the gut fall under an emergent class of therapeutics, called live biotherapeutic products (LBPs). As live organisms that require symbiotic host interactions, LBPs offer unique therapeutic opportunities, but also face distinct challenges in the gut microenvironment. In this review, we describe recent approaches (often demonstrated using traditional probiotic microorganisms) to discover LBP chassis and genetic parts utilizing omics-based methods and highlight LBP delivery strategies, with a focus on addressing physiological challenges that LBPs encounter after oral administration. Finally, we share our perspective on the opportunity to apply an integrated approach, wherein discovery and delivery strategies are utilized synergistically, towards tailoring and optimizing LBP efficacy.


Asunto(s)
Probióticos , Administración Oral , Ingeniería Genética , Probióticos/uso terapéutico
8.
Cell Host Microbe ; 29(6): 854-855, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111392

RESUMEN

The infant gut microbiota is shaped by diverse environmental exposures that alter its composition and can enrich antimicrobial resistance genes (ARGs). In this issue of Cell Host & Microbe, Li et al. (2021) studied the causes, spread, and dynamics of ARGs and their relationship with asthma-associated microbiota in Danish children.


Asunto(s)
Asma , Microbioma Gastrointestinal , Antibacterianos/farmacología , Niño , Exposición a Riesgos Ambientales , Escherichia coli , Humanos , Lactante , Estilo de Vida , Hermanos
9.
ACS Synth Biol ; 10(5): 1039-1052, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33843197

RESUMEN

Saccharomyces boulardii is a probiotic yeast that exhibits rapid growth at 37 °C, is easy to transform, and can produce therapeutic proteins in the gut. To establish its ability to produce small molecules encoded by multigene pathways, we measured the amount and variance in protein expression enabled by promoters, terminators, selective markers, and copy number control elements. We next demonstrated efficient (>95%) CRISPR-mediated genome editing in this strain, allowing us to probe engineered gene expression across different genomic sites. We leveraged these strategies to assemble pathways enabling a wide range of vitamin precursor (ß-carotene) and drug (violacein) titers. We found that S. boulardii colonizes germ-free mice stably for over 30 days and competes for niche space with commensal microbes, exhibiting short (1-2 day) gut residence times in conventional and antibiotic-treated mice. Using these tools, we enabled ß-carotene synthesis (194 µg total) in the germ-free mouse gut over 14 days, estimating that the total mass of additional ß-carotene recovered in feces was 56-fold higher than the ß-carotene present in the initial probiotic dose. This work quantifies heterologous small molecule production titers by S. boulardii living in the mammalian gut and provides a set of tools for modulating these titers.


Asunto(s)
Antineoplásicos/metabolismo , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Indoles/metabolismo , Ingeniería Metabólica/métodos , Probióticos/metabolismo , Provitaminas/biosíntesis , Saccharomyces boulardii/metabolismo , beta Caroteno/biosíntesis , Animales , Sistemas CRISPR-Cas , Heces/química , Femenino , Microbioma Gastrointestinal , Edición Génica/métodos , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Microorganismos Modificados Genéticamente , Familia de Multigenes , Plásmidos/genética , Regiones Promotoras Genéticas , Saccharomyces boulardii/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...