Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fluoresc ; 34(2): 501-514, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37432581

RESUMEN

Eliminating hazardous organic contaminants from water is a major concern today. Nanomaterials with their textural features, large surface area, electrical conductivity, and magnetic properties make them efficient for the removal and photocatalytic degradation of organic pollutants. The reaction mechanisms of the photocatalytic oxidation of common organic pollutants were critically examined. A detailed review of articles published on photocatalytic degradation of hydrocarbons, pesticides, and dyes was presented therein. This review seeks to bridge information gaps on the reported nanomaterial as photocatalysts for the degradation of organic pollutants under sub-headings, nanomaterials, organic pollutants, degradation of organic pollutants, and mechanisms of photocatalytic activities.

2.
J Fluoresc ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38038874

RESUMEN

This study examined the surface morphology and photocatalytic activity of nickel oxide (NiO) nanoparticles prepared through a chemical method. The synthesized nanoparticle was characterized by using spectroscopic and microscopic techniques. Photocatalytic degradation of hazardous Eriochrome Black T (EBT) was carried out using the synthesized nanoparticle and the efficiency of the NiO used was determined. Highest degradation efficiency of 70% at 25 mg loading was observed at 40 min exposure time. The study concluded that the synthesized nanoparticles could be used in industrial wastewater treatment containing organic dyes.

3.
J Fluoresc ; 32(6): 2223-2236, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36042154

RESUMEN

Graphene quantum dots which are known as zero-dimensional materials are gaining increasing attention from researchers all over the world. This is predicated upon their relatively unique chemiluminescent, fluorescent, electrochemiluminescent, and electronic properties. The precise mechanism of electrochemiluminescence continues to be a subject of debate in the research world, and this is important in identifying synthetic pathways for graphene quantum dots. Heavy metals and other emerging pollutants are global health and environmental concerns. Several studies have reported the sensitivity and limit of detection of graphene quantum dots up to the nano-, pico-, and femto- levels when used as sensors. This review seeks to bridge information gaps on the reported electrochemiluminescence chemosensors for emerging pollutants using graphene quantum dots under the sub-headings, synthesis, characterization, electrochemiluminescence chemosensor detection, and comparison with other detection methods.


Asunto(s)
Técnicas Biosensibles , Contaminantes Ambientales , Grafito , Metales Pesados , Puntos Cuánticos , Grafito/química , Puntos Cuánticos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...