Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Immunol Lett ; 256-257: 48-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37023968

RESUMEN

microRNAs (miRNAs) are small non-coding RNA sequences that negatively regulate the expression of protein-encoding genes at the post-transcriptional level. They play a role in the regulation of inflammatory responses by controlling the proliferation and activation of immune cells and their expression is disrupted in several immune-mediated inflammatory disorders. Among these, autoinflammatory diseases (AID) are a group of rare hereditary disorders caused by abnormal activation of the innate immune system and characterized by recurrent fevers. Major groups of AID are inflammasomopathies, which are associated with hereditary defects in the activation of inflammasomes, cytosolic multiprotein signaling complexes regulating IL-1 family cytokine maturation and pyroptosis. The study of the role of miRNAs in AID is only recently emerging and remains scarce in inflammasomopathies. In this review, we describe the AID and inflammasomopathies, and the current knowledge on the role of miRNAs in disease processes.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , MicroARNs , Humanos , MicroARNs/genética , Inmunidad Innata , Enfermedades Autoinflamatorias Hereditarias/genética , Inflamasomas/metabolismo , Citocinas
2.
Elife ; 122023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36848406

RESUMEN

Bone destruction is a hallmark of chronic inflammation, and bone-resorbing osteoclasts arising under such a condition differ from steady-state ones. However, osteoclast diversity remains poorly explored. Here, we combined transcriptomic profiling, differentiation assays and in vivo analysis in mouse to decipher specific traits for inflammatory and steady-state osteoclasts. We identified and validated the pattern-recognition receptors (PRR) Tlr2, Dectin-1, and Mincle, all involved in yeast recognition as major regulators of inflammatory osteoclasts. We showed that administration of the yeast probiotic Saccharomyces boulardii CNCM I-745 (Sb) in vivo reduced bone loss in ovariectomized but not sham mice by reducing inflammatory osteoclastogenesis. This beneficial impact of Sb is mediated by the regulation of the inflammatory environment required for the generation of inflammatory osteoclasts. We also showed that Sb derivatives as well as agonists of Tlr2, Dectin-1, and Mincle specifically inhibited directly the differentiation of inflammatory but not steady-state osteoclasts in vitro. These findings demonstrate a preferential use of the PRR-associated costimulatory differentiation pathway by inflammatory osteoclasts, thus enabling their specific inhibition, which opens new therapeutic perspectives for inflammatory bone loss.


Asunto(s)
Osteoporosis , Probióticos , Animales , Ratones , Osteogénesis , Osteoporosis/terapia , Receptor Toll-Like 2 , Saccharomyces/genética , Saccharomyces/metabolismo
3.
Front Immunol ; 13: 983771, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36325355

RESUMEN

During many years, chemo-immunotherapy fludarabine-cyclophosphamide-rituximab (FCR) was the gold standard for first line treatment of medically fit patients with symptomatic B-chronic lymphocytic leukemia (CLL). Over the last decade, targeted biotherapies have revolutionized the treatment of B-CLL patients and almost entirely supplanted FCR. However, no biomarker still exists to predict the complete remission (CR) with undetectable minimal residual disease (uMRD) in bone marrow (BM), which remains the best predictive factor for survival. MicroRNAs represent a class of molecular biomarkers which expression is altered in B-CLL. Our study aimed at identifying before treatment blood miRNAs that predict treatment outcome in previously untreated B-CLL patients (NCT01370772, https://clinicaltrials.gov/ct2/show/NCT01370772). Using hierarchical clustering of miRNA expression profiles discriminating 8 patients who achieved CR with BM uMRD from 8 patients who did not achieve CR and displayed detectable BM MRD, we identified 25 miRNAs differentially expressed before treatment. The expression of 11 miRNAs was further validated on a larger cohort (n=123). Based on the dosage of 5 miRNAs at diagnosis, a decision tree was constructed to predict treatment outcome. We identified 6 groups of patients with a distinct probability of being CR with BM uMRD to FCR treatment, ranging from 72% (miR-125b, miR-15b and miR-181c high) to 4% (miR-125b and miR-193b low). None of the patients displaying high expression levels of miR-125b, miR-15b and miR-181c relapsed during study follow-up. In contrast, patients with low miR-15b and high miR-412, or with low miR-125b and miR-193b, demonstrated significant low PFS. RNA sequencing of blood at diagnosis identified that patients relapsing after treatment are characterized by significant enrichment of gene signatures related to cell cycle, MYC target genes, metabolism and translation regulation. Conversely, patients achieving CR with BM uMRD displayed significant enrichment in genes related to communication between CLL cells and the microenvironment, immune system activation and upregulation of polycomb PRC2 complex target genes. Our results suggest that blood miRNAs are potent predictive biomarkers for FCR treatment efficacy and might be implicated in the FCR efficacy in B-CLL patients, providing new insight into unmet need for the treatment of B-CLL patients and identifying pathways predictive of patients' remission. Clinical trial registration: ClinicalTrials.gov, identifier NCT01370772.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , MicroARNs , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , MicroARNs/genética , MicroARNs/uso terapéutico , Neoplasia Residual/genética , Rituximab , Resultado del Tratamiento , Microambiente Tumoral , Estudios Clínicos como Asunto
4.
Front Physiol ; 12: 738140, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803730

RESUMEN

A subset of microRNA (miRNA) has been shown to play an important role in mitochondrial (mt) functions and are named MitomiR. They are present within or associated with mitochondria. Most of the mitochondrial miRNAs originate from the nucleus, while a very limited number is encoded by mtDNA. Moreover, the miRNA machinery including the Dicer and Argonaute has also been detected within mitochondria. Recent, literature has established a close relationship between miRNAs and inflammation. Indeed, specific miRNA signatures are associated with macrophage differentiation, polarization and functions. Nevertheless, the regulation of macrophage inflammatory pathways governed specifically by MitomiR and their implication in immune-mediated inflammatory disorders remain poorly studied. Here, we propose a hypothesis in which MitomiR play a key role in triggering macrophage differentiation and modulating their downstream activation and immune functions. We sustain this proposition by bioinformatic data obtained from either the human monocytic THP1 cell line or the purified mitochondrial fraction of PMA-induced human macrophages. Interestingly, 22% of the 754 assayed miRNAs were detected in the mitochondrial fraction and are either exclusively or highly enriched cellular miRNA. Furthermore, the in silico analysis performed in this study, identified a specific MitomiR signature associated with macrophage differentiation that was correlated with gene targets within the mitochondria genome or with mitochondrial pathways. Overall, our hypothesis and data suggest a previously unrecognized link between MitomiR and macrophage function and fate. We also suggest that the MitomiR-dependent control could be further enhanced through the transfer of mitochondria from donor to target cells, as a new strategy for MitomiR delivery.

5.
Front Immunol ; 12: 668060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276658

RESUMEN

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, kills 1.5 to 1.7 million people every year. Macrophages are Mtb's main host cells and their inflammatory response is an essential component of the host defense against Mtb. However, Mtb is able to circumvent the macrophages' defenses by triggering an inappropriate inflammatory response. The ability of Mtb to hinder phagolysosome maturation and acidification, and to escape the phagosome into the cytosol, is closely linked to its virulence. The modulation of the host inflammatory response relies on Mtb virulence factors, but remains poorly studied. Understanding macrophage interactions with Mtb is crucial to develop strategies to control tuberculosis. The present study aims to determine the inflammatory response transcriptome and miRNome of human macrophages infected with the virulent H37Rv Mtb strain, to identify macrophage genetic networks specifically modulated by Mtb virulence. Using human macrophages infected with two different live strains of mycobacteria (live or heat-inactivated Mtb H37Rv and M. marinum), we quantified and analyzed 184 inflammatory mRNAs and 765 micro(mi)RNAs. Transcripts and miRNAs differently modulated by H37Rv in comparison with the two other conditions were analyzed using in silico approaches. We identified 30 host inflammatory response genes and 37 miRNAs specific for H37Rv virulence, and highlight evidence suggesting that Mtb intracellular-linked virulence depends on the inhibition of IL-1ß-dependent pro-inflammatory response, the repression of apoptosis and the delay of the recruitment and activation of adaptive immune cells. Our findings provide new potential targets for the development of macrophage-based therapeutic strategies against TB.


Asunto(s)
Citocinas/metabolismo , Mediadores de Inflamación/metabolismo , Pulmón/microbiología , Macrófagos/microbiología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/microbiología , Inmunidad Adaptativa , Apoptosis , Citocinas/genética , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Pulmón/inmunología , Pulmón/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/metabolismo , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/inmunología , Mycobacterium marinum/patogenicidad , Mycobacterium tuberculosis/inmunología , Transducción de Señal , Células THP-1 , Transcriptoma , Tuberculosis/genética , Tuberculosis/inmunología , Tuberculosis/metabolismo , Virulencia
6.
Front Immunol ; 12: 624024, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841404

RESUMEN

Objectives: Mesenchymal stem/stromal cells (MSCs) are widely investigated in regenerative medicine thanks to their immunomodulatory properties. They exert their anti-inflammatory function thanks to the secretion of a number of mediators, including proteins and miRNAs, which can be released in the extracellular environment or in the cargo of extracellular vesicles (EVs). However, the role of miRNAs in the suppressive function of MSCs is controversial. The aim of the study was to identify miRNAs that contribute to the immunomodulatory function of human bone marrow-derived MSCs (BM-MSCs). Methods: Human BM-MSCs were primed by coculture with activated peripheral blood mononuclear cells (aPBMCs). High throughput miRNA transcriptomic analysis was performed using Human MicroRNA TaqMan® Array Cards. The immunosuppressive function of miRNAs was investigated in mixed lymphocyte reactions and the delayed type hypersensitivity (DTH) murine model. Results: Upon priming, 21 out of 377 tested miRNAs were significantly modulated in primed MSCs. We validated the up-regulation of miR-29a, miR-146a, miR-155 and the down-regulation of miR-149, miR-221 and miR-361 in additional samples of primed MSCs. We showed that miR-155 significantly reduced the proliferation of aPBMCs in vitro and inflammation in vivo, using the DTH model. Analysis of miRNA-mRNA interactions revealed miR-221 as a potential target gene that is down-regulated by miR-155 both in primed MSCs and in aPBMCs. Conclusion: Here, we present evidence that miR-155 participates to the immunosuppressive function of human BM-MSCs and down-regulates the expression of miR-221 as a possible inflammatory mediator.


Asunto(s)
Vesículas Extracelulares/metabolismo , Hipersensibilidad Tardía/prevención & control , Leucocitos Mononucleares/metabolismo , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Vesículas Extracelulares/genética , Vesículas Extracelulares/inmunología , Perfilación de la Expresión Génica , Humanos , Hipersensibilidad Tardía/genética , Hipersensibilidad Tardía/inmunología , Hipersensibilidad Tardía/metabolismo , Leucocitos Mononucleares/inmunología , Prueba de Cultivo Mixto de Linfocitos , Masculino , Células Madre Mesenquimatosas/inmunología , Ratones Endogámicos C57BL , MicroARNs/genética , Transcriptoma
7.
Sci Rep ; 11(1): 4172, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603056

RESUMEN

Binding of tumour necrosis factor α (TNFα) to its receptor (TNFR1) is critical for both survival and death cellular pathways. TNFα/TNFR1 signalling is complex and tightly regulated at different levels to control cell fate decisions. Previously, we identified TNFR1-d2, an exon 2-spliced transcript of TNFRSF1A gene encoding TNFR1, whose splicing may be modulated by polymorphisms associated with inflammatory disorders. Here, we investigated the impact of TNFRSF1A variants involved in TNFR-associated periodic syndrome (TRAPS) on TNFR1-d2 protein expression and activity. We found that TNFR1-d2 could be translated by using an internal translation initiation codon and a de novo internal ribosome entry site (IRES), which resulted in a putative TNFR1 isoform lacking its N-terminal region. The kinetic of assembly of TNFR1-d2 clusters at the cell surface was reduced as compared with full-length TNFR1. Although co-localized with the full-length TNFR1, TNFR1-d2 neither activated nuclear factor (NF)-κB signalling, nor interfered with TNFR1-induced NF-κB activation. Translation of TNFR1-d2 carrying the severe p.(Thr79Met) pathogenic variant (also known as T50M) was initiated at the mutated codon, resulting in an elongated extracellular domain, increased speed to form preassembled clusters in absence of TNFα, and constitutive NF-κB activation. Overall, TNFR1-d2 might reflect the complexity of the TNFR1 signalling pathways and could be involved in TRAPS pathophysiology of patients carrying the p.(Thr79Met) disease-causing variant.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias/genética , Enfermedades Autoinflamatorias Hereditarias/patología , Mutación/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Línea Celular , Línea Celular Tumoral , Exones/genética , Células HEK293 , Células HeLa , Humanos , FN-kappa B/genética
8.
Front Immunol ; 11: 1716, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849606

RESUMEN

Despite their distinct etiology, several lines of evidence suggest that innate immunity plays a pivotal role in both juvenile idiopathic arthritis (JIA) and septic arthritis (SA) pathophysiology. Indeed, monocytes and dendritic cells (DC) are involved in the first line of defense against pathogens and play a critical role in initiating and orchestrating the immune response. The aim of this study was to compare the number and phenotype of monocytes and DCs in peripheral blood (PB) and synovial fluid (SF) from patients with JIA and SA to identify specific cell subsets and activation markers associated with pathophysiological mechanisms and that could be used as biomarkers to discriminate both diseases. The proportion of intermediate and non-classical monocytes in the SF and PB, respectively, were significantly higher in JIA than in SA patients. In contrast the proportion of classical monocytes and their absolute numbers were higher in the SF from SA compared with JIA patients. Higher expression of CD64 on non-classical monocyte was observed in PB from SA compared with JIA patients. In SF, higher expression of CD64 on classical and intermediate monocyte as well as higher CD163 expression on intermediate monocytes was observed in SA compared with JIA patients. Moreover, whereas the number of conventional (cDC), plasmacytoid (pDC) and inflammatory (infDC) DCs was comparable between groups in PB, the number of CD141+ cDCs and CD123+ pDCs in the SF was significantly higher in JIA than in SA patients. CD14+ infDCs represented the major DC subset in the SF of both groups with potent activation assessed by high expression of HLA-DR and CD86 and significant up-regulation of HLA-DR expression in SA compared with JIA patients. Finally, higher activation of SF DC subsets was monitored in SA compared with JIA with significant up-regulation of CD86 and PDL2 expression on several DC subsets. Our results show the differential accumulation and activation of innate immune cells between septic and inflammatory arthritis. They strongly indicate that the relative high numbers of CD141+ cDC and CD123+ pDCs in SF are specific for JIA while the over-activation of DC and monocyte subsets is specific for SA.


Asunto(s)
Artritis Infecciosa/inmunología , Artritis Juvenil/inmunología , Células Dendríticas/inmunología , Monocitos/inmunología , Líquido Sinovial/inmunología , Adolescente , Biomarcadores/análisis , Niño , Preescolar , Femenino , Humanos , Inmunofenotipificación , Lactante , Masculino
10.
Elife ; 92020 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-32400390

RESUMEN

Bone destruction relies on interactions between bone and immune cells. Bone-resorbing osteoclasts (OCLs) were recently identified as innate immune cells activating T cells toward tolerance or inflammation. Thus, pathological bone destruction not only relies on increased osteoclast differentiation, but also on the presence of inflammatory OCLs (i-OCLs), part of which express Cx3cr1. Here, we investigated the contribution of mouse Cx3cr1+ and Cx3cr1neg i-OCLs to bone loss. We showed that Cx3cr1+ and Cx3cr1neg i-OCLs differ considerably in transcriptional and functional aspects. Cx3cr1neg i-OCLs have a high ability to resorb bone and activate inflammatory CD4+ T cells. Although Cx3cr1+ i-OCLs are associated with inflammation, they resorb less and have in vitro an immune-suppressive effect on Cx3cr1neg i-OCLs, mediated by PD-L1. Our results provide new insights into i-OCL heterogeneity. They also reveal that different i-OCL subsets may interact to regulate inflammation. This contributes to a better understanding and prevention of inflammatory bone destruction.


Asunto(s)
Resorción Ósea/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Inflamación/metabolismo , Osteoclastos/metabolismo , Osteogénesis , Osteoporosis/metabolismo , Animales , Resorción Ósea/inmunología , Resorción Ósea/patología , Resorción Ósea/prevención & control , Receptor 1 de Quimiocinas CX3C/genética , Comunicación Celular , Células Cultivadas , Femenino , Inflamación/inmunología , Inflamación/patología , Inflamación/prevención & control , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/inmunología , Osteoclastos/patología , Osteoporosis/inmunología , Osteoporosis/patología , Osteoporosis/prevención & control , Ovariectomía , Fenotipo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
11.
Cells ; 8(12)2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31779271

RESUMEN

Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory rheumatism in childhood; microRNAs (miRNAs) have been proposed as diagnostic biomarkers. Although joints are the primary targets for JIA, a synovial fluid-based miRNA signature has never been studied. We aim to identify miRNA biomarkers in JIA by comparing synovial fluid and serum samples from children with JIA and K.kingae septic arthritis (SA). With next-generation high-throughput sequencing, we measured the absolute levels of 2083 miRNAs in synovial fluid and serum from an exploratory cohort of children and validated differentially expressed miRNAs in a replication study by using RT-qPCR. We identified a 19-miRNA signature only in synovial fluid samples that was significantly deregulated, with at least 2-fold change in expression, in JIA versus SA (p < 0.01). The combination of miR-6764-5p, miR-155, and miR-146a-5p expression in synovial fluid yielded an area under the receiver operating characteristic curve of 1 (95% CI 0.978 to 1), thereby perfectly differentiating JIA from SA in children. We propose, for the first time, a synovial fluid-specific miRNA signature for JIA and associated signaling pathways that may indicate potential biomarkers to assist in the classification and differential diagnosis of JIA and help in understanding JIA pathogenesis.


Asunto(s)
Artritis Juvenil/diagnóstico , Artritis Juvenil/genética , MicroARN Circulante , MicroARNs/genética , Líquido Sinovial/metabolismo , Artritis Juvenil/metabolismo , Biomarcadores , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Biopsia Líquida , Masculino , MicroARNs/sangre , MicroARNs/metabolismo , Pronóstico , Transducción de Señal
12.
Front Immunol ; 10: 2145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31608049

RESUMEN

Small non-coding microRNAs (miRNAs) have been found to play critical roles in many biological processes by controlling gene expression at the post-transcriptional level. They appear to fine-tune the immune response by targeting key regulatory molecules, and their abnormal expression is associated with immune-mediated inflammatory disorders. Monocytes actively contribute to tissue homeostasis by triggering acute inflammatory reactions as well as the resolution of inflammation and tissue regeneration, in case of injury or pathogen invasion. Their contribution to tissue homeostasis can have many aspects because they are able to differentiate into different cell types including macrophages, dendritic cells, and osteoclasts, which fulfill functions as different as bone remodeling and immune response. Monocytes consist of different subsets with subset-specific expression of miRNAs linked to distinct biological processes dedicated to specific roles. Therefore, understanding the role of miRNAs in the context of monocyte heterogeneity may provide clues as to which subset gives rise to which cell type in tissues. In addition, because monocytes are involved in the pathogenesis of chronic inflammation, associated with loss of tissue homeostasis and function, identifying subset-specific miRNAs might help in developing therapeutic strategies that target one subset while sparing the others. Here, we give an overview of the state-of-the-art research regarding miRNAs that are differentially expressed between monocyte subsets and how they influence monocyte functional heterogeneity in health and disease, with descriptions of specific miRNAs. We also revisit the existing miRNome data to propose a canonical signature for each subset.


Asunto(s)
MicroARNs/inmunología , Monocitos/inmunología , Animales , Humanos
13.
Autoimmun Rev ; 18(8): 796-804, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31176874

RESUMEN

Juvenile idiopathic arthritis (JIA) is a heterogeneous and multifactorial group of chronic arthritis with an onset before the age of 16 years. The pathogenesis of this disease is poorly understood, which makes the distinction among subtypes unclear, delays diagnosis and optimal therapeutic management. MicroRNAs (miRNAs) are small non-coding RNAs that play a critical role in the regulation of immune responses. Their expression is tightly controlled to ensure cellular homeostasis and function of innate and adaptive immune cells. Abnormal expression of miRNAs has been associated with the development of many inflammatory and autoimmune diseases. In this review, we gather results published on miRNAs expression profiles in JIA patients with the aim to identify miRNAs that can be used as diagnostic biomarkers and provide information on disease activity and progression. We also focus on miRNAs deregulated in different forms of JIA to shed light on common pathways potentially involved in disease pathophysiology.


Asunto(s)
Artritis Juvenil/genética , Artritis Juvenil/inmunología , MicroARNs/inmunología , Animales , Humanos
14.
Front Immunol ; 10: 375, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30899258

RESUMEN

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs that represent important posttranscriptional regulators of protein-encoding genes. In particular, miRNAs play key roles in regulating cellular processes such as proliferation, migration, and cell differentiation. Recently, miRNAs emerged as critical regulators of osteoclasts (OCs) biology and have been involved in OCs pathogenic role in several disorders. OCs are multinucleated cells generated from myeloid precursors in the bone marrow, specialized in bone resorption. While there is a growing number of information on the cytokines and signaling pathways that are critical to control the differentiation of osteoclast precursors (OCPs) into mature OCs, the connection between OC differentiation steps and miRNAs is less well-understood. The present review will first summarize our current understanding of the miRNA-regulated pathways in the sequential steps required for OC formation, from the motility and migration of OCPs to the cell-cell fusion and the final formation of the actin ring and ruffled border in the functionally resorbing multinucleated OCs. Then, considering the difficulty of working on primary OCs and on the generation of robust data we will give an update on the most recent advances in the detection technologies for miRNAs quantification and how these are of particular interest for the understanding of OC biology and their use as potential biomarkers.


Asunto(s)
Antígenos de Diferenciación/inmunología , Diferenciación Celular/inmunología , MicroARNs/inmunología , Osteoclastos/inmunología , Transducción de Señal/inmunología , Células Madre/inmunología , Animales , Humanos , Osteoclastos/citología , Células Madre/citología
15.
Chem Sci ; 9(42): 8046-8055, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30542553

RESUMEN

MicroRNAs (miRNAs) play an important role in cellular functions and in the development and progression of cancer. Precise quantification of endogenous miRNAs from different clinical patient and control samples combined with a one-to-one comparison to standard technologies is a challenging but necessary endeavor that is largely neglected by many emerging fluorescence technologies. Here, we present a simple, precise, sensitive, and specific ratiometric assay for absolute quantification of miRNAs. Isothermally amplified time-gated Förster resonance energy transfer (TG-FRET) between Tb donors and dye acceptors resulted in miRNA assays with single-nucleotide variant specificity and detection limits down to 4.2 ± 0.5 attomoles. Quantification of miR-21 from human tissues and plasma samples revealed the relevance for breast and ovarian cancer diagnostics. Analysis of miR-132 and miR-146a from acute monocytic leukemia cells (THP-1) demonstrated the broad applicability to different miRNAs and other types of clinical samples. Direct comparison to the gold standard RT-qPCR showed advantages of amplified TG-FRET concerning precision and specificity when quantifying low concentrations of miRNAs as required for diagnostic applications. Our results demonstrate that a careful implementation of rolling circle amplification and TG-FRET into one straightforward nucleic acid detection method can significantly advance the possibilities of miRNA-based cancer diagnostics and research.

16.
Glia ; 66(5): 971-986, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29399880

RESUMEN

Microglial cells have a double life as the immune cells of the brain in times of stress but have also specific physiological functions in homeostatic conditions. In pathological contexts, microglia undergo a phenotypic switch called "reaction" that promotes the initiation and the propagation of neuro-inflammation. Reaction is complex, molecularly heterogeneous and still poorly characterized, leading to the concept that microglial reactivity might be too diverse to be molecularly defined. However, it remains unknown whether reactive microglia from different pathological contexts share a common molecular signature. Using improved flow cytometry and RNAseq approaches we studied, with higher statistical power, the remodeling of microglia transcriptome in a mouse model of sepsis. Through bioinformatic comparison of our results with published datasets, we defined the microglial reactome as a set of genes discriminating reactive from homeostatic microglia. Ultimately, we identified a subset of 86 genes deregulated in both acute and neurodegenerative conditions. Our data provide a new comprehensive resource that includes functional analysis and specific molecular markers of microglial reaction which represent new tools for its unambiguous characterization.


Asunto(s)
Corteza Cerebral/metabolismo , Microglía/metabolismo , Sepsis/metabolismo , Transcriptoma , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Homeostasis/fisiología , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroinmunomodulación/fisiología , Análisis de Secuencia de ARN
17.
Theranostics ; 8(21): 5972-5985, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30613275

RESUMEN

Rationale: Monocytes play critical roles in the pathogenesis of arthritis by contributing to the inflammatory response and bone erosion. Among genes involved in regulating monocyte functions, miR-146a negatively regulates the inflammatory response and osteoclast differentiation of monocytes. It is also the only miRNA reported to differentially regulate the cytokine response of the two classical Ly6Chigh and non-classical Ly6Clow monocyte subsets upon bacterial challenge. Although miR-146a is overexpressed in many tissues of arthritic patients, its specific role in monocyte subsets under arthritic conditions remains to be explored. Methods: We analyzed the monocyte subsets during collagen-induced arthritis (CIA) development by flow cytometry. We quantified the expression of miR-146a in classical and non-classical monocytes sorted from healthy and CIA mice, as well as patients with rheumatoid arthritis (RA). We monitored arthritis features in miR-146a-/- mice and assessed in vivo the therapeutic potential of miR-146a mimics delivery to Ly6Chigh monocytes. We performed transcriptomic and pathway enrichment analyses on both monocyte subsets sorted from wild type and miR-146a-/- mice. Results: We showed that the expression of miR-146a is reduced in the Ly6Chigh subset of CIA mice and in the analogous monocyte subset (CD14+CD16-) in humans with RA as compared with healthy controls. The ablation of miR-146a in mice worsened arthritis severity, increased osteoclast differentiation in vitro and bone erosion in vivo. In vivo delivery of miR-146a to Ly6Chigh monocytes, and not to Ly6Clow monocytes, rescues bone erosion in miR-146a-/- arthritic mice and reduces osteoclast differentiation and pathogenic bone erosion in CIA joints of miR-146a+/+ mice, with no effect on inflammation. Silencing of the non-canonical NF-κB family member RelB in miR-146a-/- Ly6Chigh monocytes uncovers a role for miR-146a as a key regulator of the differentiation of Ly6Chigh, and not Ly6Clow, monocytes into osteoclasts under arthritic conditions. Conclusion: Our results show that classical monocytes play a critical role in arthritis bone erosion. They demonstrate the theranostics potential of manipulating miR-146a expression in Ly6Chigh monocytes to prevent joint destruction while sparing inflammation in arthritis.


Asunto(s)
Antígenos Ly/análisis , Artritis/patología , Huesos/patología , Diferenciación Celular , MicroARNs/análisis , Monocitos/fisiología , Osteoclastos/fisiología , Animales , Artritis/inducido químicamente , Artritis/terapia , Artritis Reumatoide/patología , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Noqueados , MicroARNs/administración & dosificación , Monocitos/química
18.
Haematologica ; 102(4): 746-754, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28126961

RESUMEN

The underlying in vivo mechanisms of rituximab action remain incompletely understood in chronic lymphocytic leukemia. Recent data suggest that circulating micro-ribonucleic acids correlate with chronic lymphocytic leukemia progression and response to rituximab. Our study aimed at identifying circulating micro-ribonucleic acids that predict response to rituximab monotherapy in chronic lymphocytic leukemia patients. Using a hierarchical clustering of micro-ribonucleic acid expression profiles discriminating 10 untreated patients with low or high lymphocyte counts, we found 26 micro-ribonucleic acids significantly deregulated. Using individual real-time reverse transcription polymerase chain reaction, the expression levels of micro-ribonucleic acids representative of these two clusters were further validated in a larger cohort (n=61). MiR-125b and miR-532-3p were inversely correlated with rituximab-induced lymphodepletion (P=0.020 and P=0.001, respectively) and with the CD20 expression on CD19+ cells (P=0.0007 and P<0.0001, respectively). In silico analyses of genes putatively targeted by both micro-ribonucleic acids revealed a central role of the interleukin-10 pathway and CD20 (MS4A1) family members. Interestingly, both micro-ribonucleic acids were negatively correlated with MS4A1 expression, while they were positively correlated with MS4A3 and MSA47 Our results identify novel circulating predictive biomarkers for rituximab-mediated lymphodepletion efficacy in chronic lymphocytic leukemia, and suggest a novel molecular mechanism responsible for the rituximab mode of action that bridges miR-125b and miR-532-3p and CD20 family members. (clinicaltrials.gov Identifier: 01370772).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Depleción Linfocítica , MicroARNs/genética , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Biomarcadores de Tumor , Análisis por Conglomerados , Diagnóstico Diferencial , Femenino , Regulación Leucémica de la Expresión Génica , Genotipo , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/mortalidad , Linfocitosis/diagnóstico , Linfocitosis/genética , Masculino , MicroARNs/sangre , Persona de Mediana Edad , Modelos Biológicos , Pronóstico , Interferencia de ARN , Rituximab/administración & dosificación , Transcriptoma , Resultado del Tratamiento
20.
Int J Mol Sci ; 17(11)2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27834806

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease that predominantly affects women. MicroRNAs have emerged as crucial regulators of the immune system, whose expression is deregulated in RA. We aimed at quantifying the expression level of 14 miRNAs located on the X chromosome and at identifying whether differences are associated with disease and/or sex. A case-control study of 21 RA patients and 22 age- and sex-matched healthy controls was performed on peripheral blood mononuclear cells. The expression level of five miRNAs (miR-221, miR-222, miR-532, miR-106a, and miR-98) was significantly different between RA and controls when stratifying by sex, and the expression level of four miRNAs (miR-222, miR-532, miR-98, and miR-92a) was significantly different between RA females and males. The expression quantitative trait loci (eQTL) analysis revealed a significant gender effect of the FoxP3 promoter polymorphism rs3761548A/C on miR-221, miR-222 and miR-532 expression levels, and of the FoxP3 polymorphism rs2232365A/G on miR-221 expression levels in PBMC of RA patients. These data further support the involvement of the X chromosome in RA susceptibility. X-linked miRNAs, in the context of sex differences, might provide novel insight into new molecular mechanisms and potential therapeutic targets in RA for disease treatment and prevention.


Asunto(s)
Artritis Reumatoide/diagnóstico , Cromosomas Humanos X , Factores de Transcripción Forkhead/genética , MicroARNs/genética , Adulto , Anciano , Artritis Reumatoide/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Estudios de Casos y Controles , Femenino , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Leucocitos Mononucleares , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Sitios de Carácter Cuantitativo , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA