Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Front Vet Sci ; 11: 1396552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38860005

RESUMEN

The threat posed by emerging infectious diseases is a major concern for global public health, animal health and food security, and the role of birds in transmission is increasingly under scrutiny. Each year, millions of mass-reared game-farm birds are released into the wild, presenting a unique and a poorly understood risk to wild and susceptible bird populations, and to human health. In particular, the shedding of enteric pathogens through excrement into bodies of water at shared migratory stop-over sites, and breeding and wintering grounds, could facilitate multi-species long-distance pathogen dispersal and infection of high numbers of naive endemic birds annually. The Mallard (Anas platyrhynchos) is the most abundant of all duck species, migratory across much of its range, and an important game species for pen-rearing and release. Major recent population declines along the US Atlantic coast has been attributed to game-farm and wild mallard interbreeding and the introduction maladaptive traits into wild populations. However, pathogen transmission and zoonosis among game-farms Mallard may also impact these populations, as well as wildlife and human health. Here, we screened 16 game-farm Mallard from Wisconsin, United States, for enteric viral pathogens using metatranscriptomic data. Four families of viral pathogens were identified - Picobirnaviridae (Genogroup I), Caliciviridae (Duck Nacovirus), Picornaviridae (Duck Aalivirus) and Sedoreoviridae (Duck Rotavirus G). To our knowledge, this is the first report of Aalivirus in the Americas, and the first report of Calicivirus outside domestic chicken and turkey flocks in the United States. Our findings highlight the risk of viral pathogen spillover from peri-domestically reared game birds to naive wild bird populations.

2.
Mol Ecol ; 32(1): 198-213, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239465

RESUMEN

Influenza A viruses (IAV) circulate endemically among many wild aquatic bird populations that seasonally migrate between wintering grounds in southern latitudes to breeding ranges along the perimeter of the circumpolar arctic. Arctic and subarctic zones are hypothesized to serve as ecologic drivers of the intercontinental movement and reassortment of IAVs due to high densities of disparate populations of long distance migratory and native bird species present during breeding seasons. Iceland is a staging ground that connects the East Atlantic and North Atlantic American flyways, providing a unique study system for characterizing viral flow between eastern and western hemispheres. Using Bayesian phylodynamic analyses, we sought to evaluate the viral connectivity of Iceland to proximal regions and how inter-species transmission and reassortment dynamics in this region influence the geographic spread of low and highly pathogenic IAVs. Findings demonstrate that IAV movement in the arctic and subarctic reflects wild bird migration around the perimeter of the circumpolar north, favouring short-distance flights between proximal regions rather than long distance flights over the polar interior. Iceland connects virus movement between mainland Europe and North America, consistent with the westward migration of wild birds from mainland Europe to Northeastern Canada and Greenland. Though virus diffusion rates were similar among avian taxonomic groups in Iceland, gulls play an outsized role as sinks of IAVs from other avian hosts prior to onward migration. These data identify patterns of virus movement in northern latitudes and inform future surveillance strategies related to seasonal and emergent IAVs with potential public health concern.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Teorema de Bayes , Animales Salvajes , Aves , Migración Animal , Filogenia
3.
Harmful Algae ; 117: 102270, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944958

RESUMEN

Harmful algal blooms produce biotoxins that can injure or kill fish, wildlife, and humans. These blooms occur naturally but have intensified in many locations globally due to recent climatic changes, including ocean warming. Such changes are especially pronounced in northern regions, where the effects of paralytic shellfish toxins (PSTs) on marine wildlife are of growing concern. In Alaska, seabird mortality events have increased in frequency, magnitude, and duration since 2015 alongside anomalously high ocean temperatures. Although starvation has been implicated as the apparent cause of death in many of these die-offs, saxitoxin (STX) and other PSTs have been identified as possible contributing factors. Here, we describe a mortality event at a nesting colony of Arctic Terns (Sterna paradisaea) near Juneau, Alaska in 2019 and report elevated concentrations of PSTs in bird, forage fish, and mussel samples. Concentrations of STX and other PSTs in tern tissues (2.5-51.2 µg 100g-1 STX-equivalents [STX-eq]) were of similar magnitude to those reported from other PST-induced bird die-offs. We documented high PST concentrations in blue mussels (>11,000 µg 100g-1 STX-eq; Mytilus edulis spp.) collected from nearby beaches, as well as in forage fish (up to 494 µg 100g-1 STX-eq) retrieved from Arctic Tern nests, thereby providing direct evidence of PST exposure via the terns' prey. At maximum concentrations measured in this study, a single 5 g Pacific Sand Lance (Ammodytes personatus) could exceed the median lethal STX dose (LD50) currently estimated for birds, offering strong support for PSTs as a likely source of tern mortality. In addition to describing this localized bird mortality event, we used existing energetics data from adult and nestling Arctic Terns to calculate estimated cumulative daily PST exposure based on ecologically relevant concentrations in forage fish. Our estimates revealed potentially lethal levels of PST exposure even at relatively low (≤30 ug 100g-1 STX-eq) toxin concentrations in prey. These findings suggest that PSTs present a significant hazard to Arctic Terns and other northern seabirds and should be included in future investigations of avian mortality events as well as assessments of population health.


Asunto(s)
Charadriiformes , Alaska , Animales , Aves , Peces , Humanos , Saxitoxina , Alimentos Marinos , Mariscos/análisis
4.
Harmful Algae ; 109: 102109, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34815022

RESUMEN

Since 2014, widespread, annual mortality events involving multiple species of seabirds have occurred in the Gulf of Alaska, Bering Sea, and Chukchi Sea. Among these die-offs, emaciation was a common finding with starvation often identified as the cause of death. However, saxitoxin (STX) was detected in many carcasses, indicating exposure of these seabirds to STX in the marine environment. Few data are available that describe the effects of STX in birds, thus presenting challenges for determining its contributions to specific mortality events. To address these knowledge gaps, we conducted an acute oral toxicity trial in mallards (Anas platyrhynchos), a common laboratory avian model, using an up-and-down method to estimate the median lethal dose (LD50) for STX. Using an enzyme-linked immunosorbent assay (ELISA), we tested select tissues from all birds and feces from those individuals that survived initial dosing. Samples with an ELISA result that exceeded approximately 10 µg 100 g-1 STX and randomly selected ELISA negative samples were further tested by high-performance liquid chromatography (HPLC). Tissues collected from mallards were also examined grossly at necropsy and then later by microscopy to identify lesions attributable to STX. The estimated LD50 was 167 µg kg-1 (95% CI = 69-275 µg kg-1). Saxitoxin was detected in fecal samples of all mallards tested for up to 48 h after dosing and at the end of the sampling period (7 d) in three birds. In those individuals that died or were euthanized <2 h after dosing, STX was readily detected throughout the gastrointestinal tract but only infrequently in heart, kidney, liver, lung, and breast muscle. No gross or microscopic lesions were observed that could be attributable to STX exposure. Given its acute toxicity, limited detectability, and frequent occurrence in the Alaska marine environment, additional research on STX in seabirds is warranted.


Asunto(s)
Aves , Saxitoxina , Alaska , Animales , Cromatografía Líquida de Alta Presión , Saxitoxina/análisis , Saxitoxina/toxicidad
5.
Influenza Other Respir Viruses ; 15(6): 767-777, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323380

RESUMEN

BACKGROUND: The 2015 highly pathogenic avian influenza virus (HPAIV) H5N2 clade 2.3.4.4 outbreak in upper midwestern U.S. poultry operations was not detected in wild birds to any great degree during the outbreak, despite wild waterfowl being implicated in the introduction, reassortment, and movement of the virus into North America from Asia. This outbreak led to the demise of over 50 million domestic birds and occurred mainly during the northward spring migration of adult avian populations. OBJECTIVES: There have been no experimental examinations of the pathogenesis, transmission, and population impacts of this virus in adult wild waterfowl with varying exposure histories-the most relevant age class. METHODS: We captured, housed, and challenged adult wild mallards (Anas platyrhynchos) with HPAIV H5N2 clade 2.3.4.4 and measured viral infection, viral excretion, and transmission to other mallards. RESULTS: All inoculated birds became infected and excreted moderate amounts of virus, primarily orally, for up to 14 days. Cohoused, uninoculated birds also all became infected. Serological status had no effect on susceptibility. There were no obvious clinical signs of disease, and all birds survived to the end of the study (14 days). CONCLUSIONS: Based on these results, adult mallards are viable hosts of HPAIV H5N2 regardless of prior exposure history and are capable of transporting the virus over short and long distances. These findings have implications for surveillance efforts. The capture and sampling of wild waterfowl in the spring, when most surveillance programs are not operating, are important to consider in the design of future HPAIV surveillance programs.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Brotes de Enfermedades , Patos , Humanos , Subtipo H5N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Aves de Corral , Enfermedades de las Aves de Corral/epidemiología
6.
J Wildl Dis ; 57(2): 399-407, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33822145

RESUMEN

Between 2014 and 2017, widespread seabird mortality events were documented annually in the Bering and Chukchi seas, concurrent with dramatic reductions of sea ice, warmer than average ocean temperatures, and rapid shifts in marine ecosystems. Among other changes in the marine environment, harmful algal blooms (HABs) that produce the neurotoxins saxitoxin (STX) and domoic acid (DA) have been identified as a growing concern in this region. Although STX and DA have been documented in Alaska (US) for decades, current projections suggest that the incidence of HABs is likely to increase with climate warming and may pose a threat to marine birds and other wildlife. In 2017, a multispecies die-off consisting of primarily Northern Fulmars (Fulmarus glacialis) and Short-tailed Shearwaters (Ardenna tenuirostris) occurred in the Bering and Chukchi seas. To evaluate whether algal toxins may have contributed to bird mortality, we tested carcasses collected from multiple locations in western and northern Alaska for STX and DA. We did not detect DA in any samples, but STX was present in 60% of all individuals tested and in 88% of Northern Fulmars. Toxin concentrations in Northern Fulmars were within the range of those reported from other STX-induced bird die-offs, suggesting that STX may have contributed to mortalities. However, direct neurotoxic action by STX could not be confirmed and starvation appeared to be the proximate cause of death among birds examined in this study.


Asunto(s)
Enfermedades de las Aves/inducido químicamente , Charadriiformes , Mortalidad , Toxinas Biológicas/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Alaska , Animales , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Océanos y Mares , Especificidad de la Especie
7.
Ecol Appl ; 30(2): e02040, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31755623

RESUMEN

Waterfowl and shorebirds are the primary hosts of influenza A virus (IAV), however, in most surveillance efforts, large populations of birds are not routinely examined; specifically marine ducks and other birds that reside predominately on or near the ocean. We conducted a long-term study sampling sea ducks and gulls in coastal Maine for IAV and found a virus prevalence (1.7%) much lower than is typically found in freshwater duck populations. We found wide year-to-year variation in virus detection in sea ducks and that the ocean water temperature was an important factor affecting IAV prevalence. In particular, the ocean temperature that occurred 11 d prior to collecting virus positive samples was important while water temperature measured concurrently with host sampling had no explanatory power for viral detection. We also experimentally showed that IAV is relatively unstable in sea water at temperatures typically found during our sampling. This represents the first report of virus prevalence and actual environmental data that help explain the variation in marine IAV transmission dynamics.


Asunto(s)
Virus de la Influenza A , Gripe Aviar/epidemiología , Animales , Aves , Patos , Maine , Océanos y Mares , Prevalencia , Temperatura
8.
J Hered ; 110(3): 261-274, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067326

RESUMEN

The outbreak and transmission of disease-causing pathogens are contributing to the unprecedented rate of biodiversity decline. Recent advances in genomics have coalesced into powerful tools to monitor, detect, and reconstruct the role of pathogens impacting wildlife populations. Wildlife researchers are thus uniquely positioned to merge ecological and evolutionary studies with genomic technologies to exploit unprecedented "Big Data" tools in disease research; however, many researchers lack the training and expertise required to use these computationally intensive methodologies. To address this disparity, the inaugural "Genomics of Disease in Wildlife" workshop assembled early to mid-career professionals with expertise across scientific disciplines (e.g., genomics, wildlife biology, veterinary sciences, and conservation management) for training in the application of genomic tools to wildlife disease research. A horizon scanning-like exercise, an activity to identify forthcoming trends and challenges, performed by the workshop participants identified and discussed 5 themes considered to be the most pressing to the application of genomics in wildlife disease research: 1) "Improving communication," 2) "Methodological and analytical advancements," 3) "Translation into practice," 4) "Integrating landscape ecology and genomics," and 5) "Emerging new questions." Wide-ranging solutions from the horizon scan were international in scope, itemized both deficiencies and strengths in wildlife genomic initiatives, promoted the use of genomic technologies to unite wildlife and human disease research, and advocated best practices for optimal use of genomic tools in wildlife disease projects. The results offer a glimpse of the potential revolution in human and wildlife disease research possible through multi-disciplinary collaborations at local, regional, and global scales.


Asunto(s)
Enfermedades de los Animales/etiología , Animales Salvajes , Genómica , Investigación , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Animales , Biodiversidad , Evolución Biológica , Biología Computacional/métodos , Susceptibilidad a Enfermedades , Ecología , Ambiente , Genoma , Genómica/métodos , Interacciones Huésped-Patógeno/genética , Humanos
9.
J Virol ; 93(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30996092

RESUMEN

Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.


Asunto(s)
Hurones/virología , Subtipo H10N7 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Aerosoles , Animales , Animales Salvajes/virología , Aves/virología , Línea Celular , Charadriiformes/virología , Genoma Viral , Humanos , Islandia , Subtipo H10N7 del Virus de la Influenza A/clasificación , Subtipo H10N7 del Virus de la Influenza A/genética , Subtipo H10N7 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/patología , Pandemias , Filogenia , Polisacáridos , Sistema Respiratorio/patología , Sistema Respiratorio/virología , Alineación de Secuencia
10.
J Wildl Dis ; 55(1): 266-269, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30216129

RESUMEN

We describe a die-off of little brown bats ( Myotis lucifugus carissima) associated with acute intoxication with microcystin-LR in 2016 at Scofield Reservoir in Utah, US. High levels of this cyanotoxin in water from the reservoir and gastrointestinal content of bats supported this diagnosis.


Asunto(s)
Quirópteros , Exposición a Riesgos Ambientales , Microcistinas/toxicidad , Agua/química , Animales , Toxinas Marinas , Abastecimiento de Agua
11.
Evol Appl ; 11(4): 547-557, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29636805

RESUMEN

Highly pathogenic avian influenza virus (HPAIV) is a multihost pathogen with lineages that pose health risks for domestic birds, wild birds, and humans. One mechanism of intercontinental HPAIV spread is through wild bird reservoirs, and wild birds were the likely sources of a Eurasian (EA) lineage HPAIV into North America in 2014. The introduction resulted in several reassortment events with North American (NA) lineage low-pathogenic avian influenza viruses and the reassortant EA/NA H5N2 went on to cause one of the largest HPAIV poultry outbreaks in North America. We evaluated three hypotheses about novel HPAIV introduced into wild and domestic bird hosts: (i) transmission of novel HPAIVs in wild birds was restricted by mechanisms associated with highly pathogenic phenotypes; (ii) the HPAIV poultry outbreak was not self-sustaining and required viral input from wild birds; and (iii) reassortment of the EA H5N8 generated reassortant EA/NA AIVs with a fitness advantage over fully Eurasian lineages in North American wild birds. We used a time-rooted phylodynamic model that explicitly incorporated viral population dynamics with evolutionary dynamics to estimate the basic reproductive number (R0) and viral migration among host types in domestic and wild birds, as well as between the EA H5N8 and EA/NA H5N2 in wild birds. We did not find evidence to support hypothesis (i) or (ii) as our estimates of the transmission parameters suggested that the HPAIV outbreak met or exceeded the threshold for persistence in wild birds (R0 > 1) and poultry (R0 ≈ 1) with minimal estimated transmission among host types. There was also no evidence to support hypothesis (iii) because R0 values were similar among EA H5N8 and EA/NA H5N2 in wild birds. Our results suggest that this novel HPAIV and reassortments did not encounter any transmission barriers sufficient to prevent persistence when introduced to wild or domestic birds.

12.
BMC Res Notes ; 11(1): 94, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29391058

RESUMEN

OBJECTIVE: Marijuana (Cannabis spp.) growing operations (MGO) in California have increased substantially since the mid-1990s. One environmental side-effect of MGOs is the extensive use of anticoagulant rodenticides (AR) to prevent damage to marijuana plants caused by wild rodents. In association with a long-term demographic study, we report on an observation of brodifacoum AR exposure in a threatened species, the northern spotted owl (Strix occidentalis caurina), found freshly dead within 669-1347 m of at least seven active MGOs. RESULTS: Liver and blood samples from the dead northern spotted owl were tested for 12 rodenticides. Brodifacoum was the only rodenticide detected in the liver (33.3-36.3 ng/g) and blood (0.48-0.54 ng/ml). Based on necropsy results, it was unclear what role brodifacoum had in the death of this bird. However, fatal AR poisoning has been previously reported in owls with relatively low levels of brodifacoum residues in the liver. One likely mechanism of AR transmission from MGOs to northern spotted owls in California is through ingestion of AR contaminated prey that frequent MGOs. The proliferation of MGOs with their use of ARs in forested landscapes used by northern spotted owls may pose an additional stressor for this threatened species.


Asunto(s)
4-Hidroxicumarinas/envenenamiento , Anticoagulantes/envenenamiento , Cannabis/crecimiento & desarrollo , Rodenticidas/envenenamiento , Estrigiformes , Animales , California , Cannabis/parasitología , Especies en Peligro de Extinción , Resultado Fatal , Femenino , Fitomejoramiento , Roedores/metabolismo
13.
J Wildl Dis ; 54(2): 248-260, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29369723

RESUMEN

In 2013, a mortality event of nonnative, feral Rosy-faced Lovebirds ( Agapornis roseicollis) in residential backyards in Maricopa County, Arizona, US was attributed to infection with Chlamydia psittaci. In June 2014, additional mortality occurred in the same region. Accordingly, in August 2014 we sampled live lovebirds and sympatric bird species visiting backyard bird feeders to determine the prevalence of DNA and the seroprevalence of antibodies to C. psittaci using real-time PCR-based testing and elementary body agglutination, respectively. Chlamydia psittaci DNA was present in conjunctival-choanal or cloacal swabs in 93% (43/46) of lovebirds and 10% (14/142) of sympatric birds. Antibodies to C. psittaci were detected in 76% (31/41) of lovebirds and 7% (7/102) of sympatric birds. Among the sympatric birds, Rock Doves ( Columba livia) had the highest prevalence of C. psittaci DNA (75%; 6/8) and seroprevalence (25%; 2/8). Psittacine circovirus 1 DNA was also identified, using real-time PCR-based testing, from the same swab samples in 69% (11/16) of species sampled, with a prevalence of 80% (37/46) in lovebirds and 27% (38/142) in sympatric species. The presence of either Rosy-faced Lovebirds or Rock Doves at residential bird feeders may be cause for concern for epizootic and zoonotic transmission of C. psittaci in this region.


Asunto(s)
Agapornis , Enfermedades de las Aves/microbiología , Chlamydophila psittaci/aislamiento & purificación , Columbidae , Passeriformes , Psitacosis/veterinaria , Agapornis/microbiología , Animales , Animales Salvajes , Arizona/epidemiología , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/mortalidad , Columbidae/microbiología , Passeriformes/microbiología , Psitacosis/epidemiología , Psitacosis/microbiología , Psitacosis/mortalidad
14.
Appl Environ Microbiol ; 83(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28500043

RESUMEN

In November and December of 2013, a large mortality event involving 15,000 to 20,000 eared grebes (Podiceps nigricollis) occurred at the Great Salt Lake (GSL), UT. The onset of the outbreak in grebes was followed by a mortality event in >86 bald eagles (Haliaeetus leucocephalus). During the die-off, West Nile virus (WNV) was detected by reverse transcription-PCR (RT-PCR) or viral culture in the carcasses of grebes and eagles submitted to the National Wildlife Health Center. However, no activity of mosquitoes, the primary vectors of WNV, was detected by the State of Utah's WNV monitoring program. The transmission of WNV has rarely been reported during the winter in North America in the absence of known mosquito activity; however, the size of this die-off, the habitat in which it occurred, and the species involved are unique. We experimentally investigated whether WNV could survive in water with a high salt content, as found at the GSL, and whether brine shrimp, the primary food of migrating eared grebes on the GSL, could have played a role in the transmission of WNV to feeding birds. We found that WNV can survive up to 72 h at 4°C in water containing 30 to 150 ppt NaCl, and brine shrimp incubated with WNV in 30 ppt NaCl may adsorb WNV to their cuticle and, through feeding, infect epithelial cells of their gut. Both mechanisms may have potentiated the WNV die-off in migrating eared grebes on the GSL.IMPORTANCE Following a major West Nile virus die-off of eared grebes and bald eagles at the Great Salt Lake (GSL), UT, in November to December 2013, this study assessed the survival of West Nile virus (WNV) in water as saline as that of the GSL and whether brine shrimp, the major food for migrating grebes, could have played a role as a vector for the virus. While mosquitoes are the major vector of WNV, under certain circumstances, transmission may occur through contaminated water and invertebrates as food.


Asunto(s)
Artemia/virología , Enfermedades de las Aves/virología , Lagos/virología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/fisiología , Animales , Enfermedades de las Aves/transmisión , Aves/virología , Culicidae/virología , Lagos/química , Estaciones del Año , Cloruro de Sodio/análisis , Utah , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/aislamiento & purificación
15.
J Wildl Dis ; 53(1): 37-45, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27580267

RESUMEN

We evaluated the potential transmission of avian influenza viruses (AIV) in wildlife species in three settings in association with an outbreak at a poultry facility: 1) small birds and small mammals on a poultry facility that was affected with highly pathogenic AIV (HPAIV) in April 2015; 2) small birds and small mammals on a nearby poultry facility that was unaffected by HPAIV; and 3) small birds, small mammals, and waterfowl in a nearby natural area. We live-captured small birds and small mammals and collected samples from hunter-harvested waterfowl to test for active viral shedding and evidence of exposure (serum antibody) to AIV and the H5N2 HPAIV that affected the poultry facility. We detected no evidence of shedding or specific antibody to AIV in small mammals and small birds 5 mo after depopulation of the poultry. We detected viral shedding and exposure to AIV in waterfowl and estimated approximately 15% viral shedding and 60% antibody prevalence. In waterfowl, we did not detect shedding or exposure to the HPAIV that affected the poultry facility. We also conducted camera trapping around poultry carcass depopulation composting barns and found regular visitation by four species of medium-sized mammals. We provide preliminary data suggesting that peridomestic wildlife were not an important factor in the transmission of AIV during the poultry outbreak, nor did small birds and mammals in natural wetland settings show wide evidence of AIV shedding or exposure, despite the opportunity for exposure.


Asunto(s)
Animales Salvajes , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar , Aves de Corral/virología , Crianza de Animales Domésticos , Animales , Aves , Virus de la Influenza A , Esparcimiento de Virus
16.
Avian Dis ; 60(1 Suppl): 354-8, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309079

RESUMEN

In 2014, clade 2.3.4.4 H5N8 highly pathogenic avian influenza (HPAI) viruses spread across the Republic of Korea and ultimately were reported in China, Japan, Russia, and Europe. Mortality associated with a reassortant HPAI H5N2 virus was detected in poultry farms in western Canada at the end of November. The same strain (with identical genetic structure) was then detected in free-living wild birds that had died prior to December 8, 2014, of unrelated causes in Whatcom County, Washington, U. S. A., in an area contiguous with the index Canadian location. A gyrfalcon (Falco rusticolus) that had hunted and fed on an American wigeon (Anas americana) on December 6, 2014, in the same area, and died 2 days later, tested positive for the Eurasian-origin HPAI H5N8. Subsequently, an active surveillance program using hunter-harvested waterfowl in Washington and Oregon detected 10 HPAI H5 viruses, of three different subtypes (four H5N2, three H5N8, and three H5N1) with four segments in common (HA, PB2, NP, and MA). In addition, a mortality-based passive surveillance program detected 18 HPAI (14 H5N2 and four H5N8) cases from Idaho, Kansas, Oregon, Minnesota, Montana, Washington, and Wisconsin. Comparatively, mortality-based passive surveillance appears to have detected these HPAI infections at a higher rate than active surveillance during the period following initial introduction into the United States.


Asunto(s)
Animales Salvajes/virología , Aves/virología , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H5N8 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Animales , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N2 del Virus de la Influenza A/fisiología , Subtipo H5N8 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/fisiología , Gripe Aviar/epidemiología , Noroeste de Estados Unidos/epidemiología , Filogenia , Virulencia
17.
J Wildl Dis ; 52(3): 709-12, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27285413

RESUMEN

In 2013 a novel avian influenza H7N9 virus was isolated from several critically ill patients in China, and infection with this virus has since caused more than 200 human deaths. Live poultry markets are the likely locations of virus exposure to humans. Peridomestic avian species also may play important roles in the transmission and maintenance of H7N9 at live poultry markets. We experimentally challenged wild European Starlings ( Sturnus vulgaris ) with the novel H7N9 virus and measured virus excretion, clinical signs, and infectious dose. We found that European Starlings can be infected with this virus when inoculated with relatively high doses, and we predict that infected birds excrete sufficient amounts of virus to transmit to other birds, including domestic chickens. Infected European Starlings showed no clinical signs or mortality after infection with H7N9. This abundant peridomestic bird may be a source of the novel H7N9 virus in live poultry markets and may have roles in virus transmission to poultry and humans.


Asunto(s)
Enfermedades de las Aves/virología , Subtipo H7N9 del Virus de la Influenza A , Estorninos , Animales , Susceptibilidad a Enfermedades , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/fisiología , ARN Viral/aislamiento & purificación , Esparcimiento de Virus , Zoonosis
18.
J Wildl Dis ; 52(2): 345-53, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-26981692

RESUMEN

West Nile virus (WNV) spread to the US western plains states in 2003, when a significant mortality event attributed to WNV occurred in Greater Sage-grouse ( Centrocercus urophasianus ). The role of avian species inhabiting sagebrush in the amplification of WNV in arid and semiarid regions of the North America is unknown. We conducted an experimental WNV challenge study in Vesper Sparrows ( Pooecetes gramineus ), a species common to sagebrush and grassland habitats found throughout much of North America. We found Vesper Sparrows to be moderately susceptible to WNV, developing viremia considered sufficient to transmit WNV to feeding mosquitoes, but the majority of birds were capable of surviving infection and developing a humoral immune response to the WNV nonstructural 1 and envelope proteins. Despite clearance of viremia, after 6 mo, WNV was detected molecularly in three birds and cultured from one bird. Surviving Vesper Sparrows were resistant to reinfection 6 mo after the initial challenge. Vesper sparrows could play a role in the amplification of WNV in sagebrush habitat and other areas of their range, but rapid clearance of WNV may limit their importance as competent amplification hosts of WNV.


Asunto(s)
Artemisia , Enfermedades de las Aves/virología , Pradera , Gorriones , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/inmunología , Animales , Anticuerpos Antivirales , Susceptibilidad a Enfermedades/veterinaria , Fiebre del Nilo Occidental/inmunología , Zoonosis
19.
PLoS One ; 10(12): e0144524, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26677841

RESUMEN

Wild waterfowl are primary reservoirs of avian influenza viruses (AIV). However the role of sea ducks in the ecology of avian influenza, and how that role differs from freshwater ducks, has not been examined. We obtained and analyzed sera from North Atlantic sea ducks and determined the seroprevalence in those populations. We also tested swab samples from North Atlantic sea ducks for the presence of AIV. We found relatively high serological prevalence (61%) in these sea duck populations but low virus prevalence (0.3%). Using these data we estimated that an antibody half-life of 141 weeks (3.2 years) would be required to attain these prevalences. These findings are much different than what is known in freshwater waterfowl and have implications for surveillance efforts, AIV in marine environments, and the roles of sea ducks and other long-lived waterfowl in avian influenza ecology.


Asunto(s)
Patos/virología , Ecología , Gripe Aviar/epidemiología , Animales , Océano Atlántico
20.
Am J Trop Med Hyg ; 93(4): 701-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26304918

RESUMEN

West Nile virus (WNV) was first detected in North America in 1999. Alaska and Hawaii (HI) remain the only U.S. states in which transmission of WNV has not been detected. Dead bird surveillance has played an important role in the detection of the virus geographically, as well as temporally. In North America, corvids have played a major role in WNV surveillance; however, the only corvid in HI is the endangered Hawaiian crow that exists only in captivity, thus precluding the use of this species for WNV surveillance in HI. To evaluate the suitability of alternate avian species for WNV surveillance, we experimentally challenged seven abundant non-native bird species present in HI with WNV and compared mortality, viremia, oral shedding of virus, and seroconversion. For detection of WNV in oral swabs, we compared viral culture, reverse-transcriptase polymerase chain reaction, and the RAMP(®) test. For detection of antibodies to WNV, we compared an indirect and a competitive enzyme-linked immunoassay. We found four species (house sparrow, house finch, Japanese white-eye, and Java sparrow) that may be useful in dead bird surveillance for WNV; while common myna, zebra dove, and spotted dove survived infection and may be useful in serosurveillance.


Asunto(s)
Enfermedades de las Aves/epidemiología , Aves/virología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales/inmunología , Enfermedades de las Aves/virología , Reservorios de Enfermedades/virología , Ensayo de Inmunoadsorción Enzimática , Hawaii/epidemiología , Vigilancia de la Población/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Viremia/epidemiología , Viremia/veterinaria , Virus del Nilo Occidental/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA