Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(14)2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37512174

RESUMEN

Wastewater treatment targeting reuse may limit water scarcity. Photocatalysis is an advanced oxidation process that may be employed in the removal of traces of organic pollutants, where the material choice is important. Titanium dioxide (TiO2) is a highly efficient photocatalyst with good aqueous stability. TiO2 powder has a high surface area, thus allowing good pollutant adsorption, but it is difficult to filter for reuse. Thin films have a significantly lower surface area but are easier to regenerate and reuse. In this paper, we report on obtaining sol-gel TiO2 thin films on spherical beads (2 mm diameter) with high surface area and easy recovery from wastewater. The complex influence of the substrate morphology (etched up to 48 h in concentrated H2SO4), of the sol dilution with ethanol (1:0 or 1:1), and the number of layers (1 or 2) on the structure, morphology, chemical composition, and photocatalytic performance of the TiO2 thin films is investigated. Etching the substrate for 2 h in H2SO4 leads to uniform, smooth surfaces on which crystalline, homogeneous TiO2 thin films are grown. Films deposited using an undiluted sol are stable in water, with some surface reorganization of the TiO2 aggregates occurring, while the films obtained using diluted sol are partially washed out. By increasing the film thickness through the deposition of a second layer, the roughness increases (from ~50 nm to ~100 nm), but this increase is not high enough to promote higher adsorption or overall photocatalytic efficiency in methylene blue photodegradation (both about 40% after 8 h of UV-Vis irradiation at 55 W/m2). The most promising thin film, deposited on spherical bead substrates (etched for 2 h in H2SO4) using the undiluted sol, with one layer, is highly crystalline, uniform, water-stable, and proves to have good photocatalytic activity.

2.
J Hazard Mater ; 320: 469-478, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27585279

RESUMEN

Materials with photocatalytic and adsorption properties for advanced wastewater treatment targeting reuse were studied. Making use of TiO2 as a well-known photocatalyst, Cu2S as a Vis-active semiconductor, and fly ash as a good adsorbent, dispersed mixtures/composites were prepared to remove pollutants from wastewater. X-ray diffraction, scanning electron microscopy, energy-dispersive X-Ray spectroscopy, atomic force microscopy, band gap energy, point of zero charge (pHpzc) and BET porosity were used to characterize the substrates. Phenol, imidacloprid and dichloroacetic acid were used as pollutants for photocatalytic activity of the new photocatalysts. Experiments using the new dispersed powders were carried out at laboratory scale in two solar simulators and under natural solar irradiation at the Plataforma Solar de Almería, in a Compound Parabolic Collector (CPC) for a comparative analysis of pollutants removal and mineralization efficiencies, and to identify features that could facilitate photocatalyst separation and reuse. The results show that radiation intensity significantly affects the phenol degradation rate. The composite mixture of TiO2 and fly ash is 2-3 times less active than sol-gel TiO2. Photodegradation kinetic data on the highly active TiO2 are compared for pollutants elimination. Photodegradation of dichloroacetic acid was fast and complete after 90min in the CPC, while after 150min imidacloprid and phenol removal was 90% and 56% respectively.

3.
J Hazard Mater ; 289: 244-256, 2015 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-25733398

RESUMEN

A novel composite based on tungsten oxide and fly ash was hydrothermally synthetized to be used as substrate in the advanced treatment of wastewaters with complex load resulted from the textile industry. The proposed treatment consists of one single step process combining photocatalysis and adsorption. The composite's crystalline structure was investigated by X-ray diffraction and FTIR, while atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to analyze the morphology. The adsorption capacity and photocatalytic properties of the material were tested on mono- and multi-pollutants systems containing two dyes (Bemacid Blau - BB and Bemacid Rot - BR) and one heavy metal ion-Cu(2+), and the optimized process conditions were identified. The results indicate better removal efficiencies using the novel composite material in the combined adsorption and photocatalysis, as compared to the separated processes. Dyes removal was significantly enhanced in the photocatalytic process by adding hydrogen peroxide and the mechanism was presented and discussed. The pseudo second order kinetics model best fitted the experimental data, both in the adsorption and in the combined processes. The kinetic parameters were calculated and correlated with the properties of the composite substrate.


Asunto(s)
Ceniza del Carbón/análisis , Óxidos/química , Tungsteno/química , Adsorción , Catálisis , Cobre/aislamiento & purificación , Contaminantes Ambientales/análisis , Cinética , Metales Pesados/análisis , Microscopía Electrónica de Rastreo , Fotoquímica
4.
J Environ Manage ; 150: 336-343, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25531918

RESUMEN

This paper reports on the synthesis, characterization and adsorption properties of a novel nano-composite obtained using the hydrothermal method applied to a fly ash-TiO2 slurry and hexadecyltrimethyl-ammonium bromide, as surface controlling agent. The new adsorbent was investigated in terms of crystallinity (XRD), surface properties (AFM, SEM, and porosity and BET surface) and surface chemistry (EDX, FTIR). The nanocomposite's properties were sequentially tested in adsorption and photocatalysis processes applied to multi-pollutant synthetic wastewaters loaded with copper cations and two industrial dyes: the acid dye Bemacid Blau and the reactive dye Bemacid Rot; the nano-composite substrate allowed reaching high removal efficiencies, above 90%, both in adsorption and in photodegradation experiments, in optimised conditions.


Asunto(s)
Ceniza del Carbón/química , Titanio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Nanocompuestos/química , Administración de Residuos
5.
J Hazard Mater ; 244-245: 773-9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23200622

RESUMEN

Wastewaters resulting from the textile and dye finishing industries need complex treatment for efficient removal of colour and other compounds existent in the dyeing and rising baths (heavy metals, surfactants, equalizers, etc.). Modified fly ash (FA) mixed with TiO(2) photocatalyst represent a viable option for simultaneous removal of dyes and heavy metals, and the optimized conditions are discussed in this paper for synthetic wastewaters containing methyl-orange (MO) and cadmium. For a cost-effective dye removal process, further tests were done, replacing the photocatalyst with a (photo)Fenton system. The optimized technological parameters (contact time, amount of fly ash and amount of Fe(2+)/H(2)O(2)) allow to reach removal efficiencies up to 88% for the heavy metal and up to 70% for the dye. The adsorption mechanisms and the process kinetic are discussed, also considering the possibility of in situ generation of the Fenton system, due to the fly ash composition.


Asunto(s)
Compuestos Azo/química , Cadmio/química , Ceniza del Carbón/química , Colorantes/química , Contaminantes Químicos del Agua/química , Adsorción , Compuestos Azo/efectos de la radiación , Cadmio/efectos de la radiación , Catálisis , Colorantes/efectos de la radiación , Peróxido de Hidrógeno/química , Hierro/química , Titanio/química , Titanio/efectos de la radiación , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/efectos de la radiación , Difracción de Rayos X
6.
J Nanosci Nanotechnol ; 11(10): 9095-101, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22400308

RESUMEN

Wastewaters resulting from textile industry sector have a different chemistry compared with most of the other wastewaters. The different dyes in excess are usually very stable and even small quantities can have a major impact to the effluent. In order to treat these wastewaters, photodegradation is a largely investigated process that can be up-scaled. Photocatalysts based on wide band gap semiconductors can be used in heterogeneous photocatalysis and mostly reported are TiO2 and WO3. Under UV irradiation they form electron-hole pairs that produce active species that can oxidize the dye molecules. The electron-hole recombination represents the main cause for low efficiencies and is limited by the use of oxidant systems like H2O2. Doctor blade technique, a reproducible, up-scalable and low cost technique was used to obtain thin films. The reference dye, used in this experiment is methylorange in solution of 0.0125 mM, corresponding to average polluted water. In order to reduce the recombination in the catalysts, H2O2 is used. Another important aspect of the dye photocatalysis process, investigated in the paper is the adsorption of the dye molecule on the photocatalyst surface, strongly depending on pH which affects the dye's structure and the surface charge. Experiments are conducted at fixed pH values: 3, and respectively 7 covering values below and over the ZPC of the photocatalysts. The results show that TiO2/WO3 films have higher efficiency then the TiO2 and WO3 films, mainly due to the surface morphology of the films. By adding H2O2, higher efficiencies are obtained, confirming that the electron-hole pair recombination is reduced. From the point of view of pH, higher efficiencies are obtained in acidic solutions and the results are comparatively discussed considering the dye's ionic/neutral structure and the photocatalyst surface charge. The efficiency was calculated using UV-VIS spectrophotometer measurements of the solution and the thin films were characterized by AFM and XRD.

7.
J Nanosci Nanotechnol ; 10(4): 2518-26, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20355456

RESUMEN

Usually, ceramic powders (SiO2, ZnO) are used as fillers for enhancing rubber mechanical strength. Poly-ethylene terephthalate (PET)-rubber nanocomposites were prepared by compression molding using titanium oxide (TiO2) nanoparticles as low content fillers (<2% wt). The interface properties of PET-rubber nanocomposites were studied before and after keeping the samples under UV-radiation for a week. UV-radiation has interesting potential for the photochemical modification of polymers and TiO2. The influence of UV radiation on the properties of the interface polymer-TiO2 nanoparticles was evaluated. The impact of nanoparticle aggregates on the nanometer to micrometer organization of PET-rubber composites was studied with Atomic Force Microscopy (AFM). The interface properties were explained by measuring the contact angles and surface tensions. The interactions between components of nanocomposites were investigated with Fourier Transform-Infrared (FTIR) and the effects of TiO2 nanoparticle on the interfaces and composites crystalline structure were evaluated by X-ray diffraction (XRD). The results proved that the TiO2 nanoparticles, in different weight percentages, did not alter the nanocomposites crystallinity or the average crystallites size, but improve the interface properties.


Asunto(s)
Cristalización/métodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/métodos , Polietilenglicoles/química , Goma/química , Titanio/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Tereftalatos Polietilenos , Propiedades de Superficie
8.
J Nanosci Nanotechnol ; 9(7): 4279-84, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19916443

RESUMEN

The paper presents the optimization process for obtaining NiO thin layers on copper substrate for solar absorber coatings, using an inexpensive and up-scalable technique: spray pyrolysis deposition (SPD). Efficient selective coatings must present a high absorption coefficient of the incident solar irradiation, and low emission of heat. The solar selective coatings design involves tailoring the surface properties for superior optical properties. The deposition parameters were varied for maximizing the solar absorbance and minimizing the thermal emittance. The film morphology was controlled using copolymers of the maleic anhydride as additives into the precursors' solution. The structural and surface properties of the films were investigated by X-ray diffraction and atomic force microscopy, respectively. The Cu/CuO(x)/NiO solar absorber shows good values for the solar absorptance (alpha(s) = 0.95) and thermal emittance (epsilon(T) = 0.05) compared with the ones obtained by other methods employed in literature and new additives are recommended in tailoring the surface of solar selective coatings.

9.
J Nanosci Nanotechnol ; 8(2): 728-32, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18464398

RESUMEN

The purpose of this study was to investigate the photocatalytic oxidation of a reactive azo dye. The photocatalytic activity of the TiO2 was studied using a reactor equipped with UV-A sources, with maximum emission at 365 nm. The photocatalytic activity of the TiO2 powder (99.9% anatase) and thin films has been measured through the decomposition of methyl orange solutions. The thin film was prepared by doctor blade and spray pyrolysis deposition (SPD). The TiO2 suspensions were prepared at 1 g/L concentration, and the initial methyl orange concentration was fixed at 7.8125 mg/L. The influence of the TiO2 (powder or thin films) and/or O2 and H2O2 on the photobleaching rate, was tested under different experiments, at pH = 5. Thin films (doctor blade) of TiO2 formed of mezo-sized aggregates formed of nanosized anatase crystallites show better photobleaching efficiency than thin film (SPD) due to their large internal surface. The rate is even higher in H2O2 compared to oxygen environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA