Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros











Intervalo de año de publicación
1.
OMICS ; 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39302202

RESUMEN

Cattle breed identification is crucial for livestock research and sustainable food systems, and advances in genomics and artificial intelligence present new opportunities to address these challenges. This study investigates the identification of the Tharparkar cattle breed using genomics tools combined with machine learning (ML) techniques. By leveraging data from the Bovine SNP 50K chip, we developed a breed-specific panel of single nucleotide polymorphisms (SNPs) for Tharparkar cattle and integrated data from seven other Indian cattle populations to enhance panel robustness. Genome-wide association studies (GWAS) and principal component analysis were employed to identify 500 SNPs, which were then refined using ML models-AdaBoost, bagging tree, gradient boosting machines, and random forest-to determine the minimal number of SNPs needed for accurate breed identification. Panels of 23 and 48 SNPs achieved accuracy rates of 95.2-98.4%. Importantly, the identified SNPs were associated with key productive and adaptive traits, thus attesting to the value and potentials of digital transformation in livestock genomics. The ML-aided ultra-low-density SNP panel approach reported here not only facilitates breed identification but also contributes to preserving genetic diversity and guiding future breeding programs.

2.
Vet Res Commun ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093527

RESUMEN

Oral ulcers induce acute weight loss due to anorexia in foot-and-mouth disease virus (FMDV) infected cattle. We hypothesized that providing a palatable form of a therapeutic diet (TD) in different physical forms would increase the feed intake, digestibility and restoration of body weight. A TD was formulated with 19% CP and 2.9 Mcal ME/kg on dry matter basis. Bull calves of 10-12 months with mean body weight of 123 ± 1.3 kg were experimentally infected with FMDV (n = 18) and offered one of the following three forms of the TD (n = 6/group) for 6 weeks post-FMDV infection (WPI): (i) TD in mash form (TDM) (ii) TD in cooked form (TDC) and (iii) TDC + customised nutrient supplement (TDCNS) such as Zn, Cu, Cr, Mn, and Se. The CNS was fed before the TDC. A group of uninfected control (n = 4) was fed TDM. Green fodder was offered in the afternoon. Dry matter intake (DMI) of TD and green fodder were recorded at 24 h interval till WPI 6. Body weight (BW) was recorded at weekly interval. Digestibility trial was conducted at WPI 6. The palatability of the TD was scored from 1- 4 and healing of tongue ulcers was analyzed by Kaplan-Meier survival curve. The results indicated that the physical form of TD increased the total DMI by WPI 3, which was supported by the restoration of BW and higher palatability score. The digestibility of all the proximate principles except EE was significantly higher (P < 0.05) in the groups that were fed TDC. It was concluded that feeding TD irrespective of the physical form, restored the ADG and DMI in the calves by WPI 3. Further, feeding cooked form of TD increased the digestibility in the FMDV infected calves and supplementation of CNS hastened the healing of glossal ulcers.

3.
Mamm Genome ; 35(3): 377-389, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014170

RESUMEN

This study seeks a comprehensive exploration of genome-wide selective processes impacting morphometric traits across diverse cattle breeds, utilizing an array of statistical methods. Morphometric traits, encompassing both qualitative and quantitative variables, play a pivotal role in characterizing and selecting livestock breeds based on their external appearance, size, and physical attributes. While qualitative traits, such as color, horn structure, and coat type, contribute to adaptive features and breed identification, quantitative traits like body weight and conformation measurements bear a closer correlation with production characteristics. This study employs advanced genotyping technologies, including the Illumina BovineSNP50 Bead Chip and next-generation sequencing methods like Reduced Representation sequencing, to identify genomic signatures associated with these traits. We applied four intra-population methods to find evidence of selection, such as Tajima's D, CLR, iHS, and ROH. We found a total of 40 genes under the selection signature, that were associated with morphometric traits in five cattle breeds (Kankrej, Tharparkar, Nelore, Sahiwal, and Gir). Crucial genes such as ADIPDQ, DPP6, INSIG1, SLC35D2 in Kankrej, LPL, ATP6V1B2, CDC14B in Tharparkar, HPSE2, PLAG1 in Nelore, PCSK1, PRKD1 in Sahiwal, and GNAQ, HPCAL1 in Gir were identified in our study. This approach provides valuable insights into the genetic basis of variations in body weight and conformation traits, facilitating informed selection processes and offering a deeper understanding of the evolutionary and domestication processes in diverse cattle breeds.


Asunto(s)
Cruzamiento , Genómica , Selección Genética , Animales , Bovinos/genética , Bovinos/anatomía & histología , Genómica/métodos , Fenotipo , Genoma , India , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento
4.
Trop Anim Health Prod ; 56(6): 203, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995510

RESUMEN

India's livestock sector has been facing significant losses due to episodes of disease outbreaks since time immemorial. Hence, biosecurity measures are very important to maintain and improve animal health along with prevention of disease outbreak. Keeping these facts into consideration, the study was proposed with an objective to assess the existing biosecurity practices adopted by the commercial dairy, pig and poultry farms. The current study was undertaken in the state of Uttar Pradesh as it is the leading state in milk and meat production. A total of 120 farmers were selected randomly including 40 each practicing commercial dairy, pig and poultry farming. An ex-post facto research methodology was used with face-to-face interview and observation to collect data. The biosecurity practices were assessed under seven dimensions such as, location and design of farm, restricted access, isolation and quarantine, cleaning and disinfection, management of feed and water, disposal of carcass, manure and waste, and health management. Results elicited that about 50% of the farmers had medium level of adoption who adopted 18-34 practices out of 51 practices. The average overall adoption score was 34.17 out of 51 (67%) which makes an overall adoption gap of 33%. Maximum adoption gap was seen in case of restricted access (43%) whereas minimum gap in adoption was seen in case of management of feed and water (27%). Pig and poultry farmers showed significantly higher biosecurity measures than dairy farmers (p < 0.05). The more significant contributors to the adoption of biosecurity measures were the level of knowledge of the farmers (p < 0.01). Other factors such as education, income, herd/flock size, Information and Communication Technology utilization, number of trainings also had a significant contribution (p < 0.05) in actual implementation of biosecurity. Hence, better understanding of these measures among the farmers must be ensured by hands on training along with proper demonstration of various procedures involved in maintaining farm biosecurity is need of the hour.


Asunto(s)
Crianza de Animales Domésticos , Industria Lechera , Aves de Corral , Animales , India , Crianza de Animales Domésticos/métodos , Industria Lechera/métodos , Porcinos , Agricultores/psicología , Bioaseguramiento , Humanos , Conocimientos, Actitudes y Práctica en Salud , Bovinos
5.
Gene ; 927: 148728, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38944163

RESUMEN

The domestication of animals marks a pivotal moment in human history, profoundly influencing our demographic and cultural progress. This process has led to significant genetic, behavioral, and physical changes in livestock species compared to their wild ancestors. Understanding the evolutionary history and genetic diversity of livestock species is crucial, and mitochondrial DNA (mtDNA) has emerged as a robust marker for investigating molecular diversity in animals. Its highly conserved gene content across animal species, minimal duplications, absence of introns, and short intergenic regions make mtDNA analysis ideal for such studies. Mitochondrial DNA analysis has uncovered distinct cattle domestication events dating back to 8000 years BC in Southwestern Asia. The sequencing of water buffalo mtDNA in 2004 provided important insights into their domestication history. Caprine mtDNA analysis identified three haplogroups, indicating varied maternal origins. Sheep, domesticated 12,000 years ago, exhibit diverse mtDNA lineages, suggesting multiple domestication events. Ovine mtDNA studies revealed clades A, B, C, and a fourth lineage, group D. The origins of domestic pigs were traced to separate European and Asian events followed by interbreeding. In camels, mtDNA elucidated the phylogeographic structure and genetic differentiation between wild and domesticated species. Horses, domesticated around 3500 BC, show significant mtDNA variability, highlighting their diverse origins. Yaks exhibit unique adaptations for high-altitude environments, with mtDNA analysis providing insights into their adaptation. Chicken mtDNA studies supported a monophyletic origin from Southeast Asia's red jungle fowl, with evidence of multiple origins. This review explores livestock evolution and diversity through mtDNA studies, focusing on cattle, water buffalo, goat, sheep, pig, camel, horse, yak and chicken. It highlights mtDNA's significance in unraveling maternal lineages, genetic diversity, and domestication histories, concluding with insights into its potential application in improving livestock production and reproduction dynamics.


Asunto(s)
ADN Mitocondrial , Domesticación , Evolución Molecular , Genoma Mitocondrial , Ganado , Animales , Ganado/genética , ADN Mitocondrial/genética , Variación Genética , Filogenia , Búfalos/genética , Bovinos/genética , Ovinos/genética , Ovinos/clasificación
6.
Cell Stress Chaperones ; 29(4): 603-614, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936463

RESUMEN

Epigenetic variations result from long-term adaptation to environmental factors. The Bos indicus (zebu) adapted to tropical conditions, whereas Bos taurus adapted to temperate conditions; hence native zebu cattle and its crossbred (B indicus × B taurus) show differences in responses to heat stress. The present study evaluated genome-wide DNA methylation profiles of these two breeds of cattle that may explain distinct heat stress responses. Physiological responses to heat stress and estimated values of Iberia heat tolerance coefficient and Benezra's coefficient of adaptability revealed better relative thermotolerance of Hariana compared to the Vrindavani cattle. Genome-wide DNA methylation patterns were different for Hariana and Vrindavani cattle. The comparison between breeds indicated the presence of 4599 significant differentially methylated CpGs with 756 hypermethylated and 3845 hypomethylated in Hariana compared to the Vrindavani cattle. Further, we found 79 genes that showed both differential methylation and differential expression that are involved in cellular stress response functions. Differential methylations in the microRNA coding sequences also revealed their functions in heat stress responses. Taken together, epigenetic differences represent the potential regulation of long-term adaptation of Hariana (B indicus) cattle to the tropical environment and relative thermotolerance.


Asunto(s)
Metilación de ADN , Respuesta al Choque Térmico , Animales , Bovinos/genética , Metilación de ADN/genética , Respuesta al Choque Térmico/genética , Termotolerancia/genética , Epigénesis Genética , Genoma , MicroARNs/genética , MicroARNs/metabolismo , Islas de CpG/genética
7.
Gene ; 917: 148465, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38621496

RESUMEN

From an economic standpoint, reproductive characteristics are fundamental for sustainable production, particularly for monotocous livestock like cattle. A longer inter-calving interval is indicative of low reproductive capacity. This issue changes the dynamics of current and future lactations since it necessitates more inseminations, veterinary care, and hormone interventions. Various reproductive phenotypes, including ovulation, mating, fertility, pregnancy, embryonic growth, and calving-related traits, are observed in dairy cattle, and these traits have been associated with several QTLs. Calving ease, age at puberty, scrotal circumference, and inseminations per conception have been associated with 4437, 10623, 10498, and 2476 Quantitative Trait Loci (QTLs), respectively. This data offers valuable insights into enhancing and comprehending reproductive traits in livestock breeding. Studying QTLs associated with reproductive traits has far-reaching implications across various fields, from agriculture and animal husbandry to human health, evolutionary biology, and conservation. It provides the foundation for informed breeding practices, advances in biotechnology, and a deeper understanding of the genetic underpinnings of reproduction.


Asunto(s)
Sitios de Carácter Cuantitativo , Reproducción , Animales , Bovinos/genética , Reproducción/genética , Femenino , Genómica/métodos , Masculino , Embarazo , Fertilidad/genética , Fenotipo , Cruzamiento/métodos
8.
Mamm Genome ; 35(2): 170-185, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485788

RESUMEN

The present study was aimed at the identification of population stratifying markers from the commercial porcine SNP 60K array and elucidate the genome-wide selective sweeps in the crossbred Landlly pig population. Original genotyping data, generated on Landlly pigs, was merged in various combinations with global suid breeds that were grouped as exotic (global pig breeds excluding Indian and Chinese), Chinese (Chinese pig breeds only), and outgroup pig populations. Post quality control, the genome-wide SNPs were ranked for their stratifying power within each dataset in TRES (using three different criteria) and FIFS programs and top-ranked SNPs (0.5K, 1K, 2K, 3K, and 4K densities) were selected. PCA plots were used to assess the stratification power of low-density panels. Selective sweeps were elucidated in the Landlly population using intra- and inter-population haplotype statistics. Additionally, Tajima's D-statistics were calculated to determine the status of balancing selection in the Landlly population. PCA plots showed 0.5K marker density to effectively stratify Landlly from other pig populations. The A-score in DAPC program revealed the Delta statistic of marker selection to outperform other methods (informativeness and FST methods) and that 3000-marker density was suitable for stratification of Landlly animals from exotic pig populations. The results from selective sweep analysis revealed the Landlly population to be under selection for mammary (NAV2), reproductive efficiency (JMY, SERGEF, and MAP3K20), body conformation (FHIT, WNT2, ASRB, DMGDH, and BHMT), feed efficiency (CSRNP1 and ADRA1A), and immunity (U6, MYO3B, RBMS3, and FAM78B) traits. More than two methods suggested sweeps for immunity and feed efficiency traits, thus giving a strong indication for selection in this direction. The study is the first of its kind in Indian pig breeds with a comparison against global breeds. In conclusion, 500 markers were able to effectively stratify the breeds. Different traits under selective sweeps (natural or artificial selection) can be exploited for further improvement.


Asunto(s)
Polimorfismo de Nucleótido Simple , Selección Genética , Animales , Genética de Población , Cruzamiento , Porcinos/genética , Marcadores Genéticos , Sus scrofa/genética , Haplotipos , Genoma/genética , Estudio de Asociación del Genoma Completo/métodos , Genotipo
9.
3 Biotech ; 14(2): 50, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268984

RESUMEN

Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.

10.
3 Biotech ; 14(2): 55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38282911

RESUMEN

Balancing selection is the process of selection that preserves various alleles within a population. Studying the areas undergoing balancing selection is essential, because it preserves genetic diversity in a population. Finding genes that exhibit signs of balancing selection during the domestication of cattle is the goal of this study. To identify regions where polymorphism has persisted in the cattle population for millions of years, we examined the genome of cattle. In this study, we used bovine SNP 50 k data to conduct a detailed genome-wide assessment of selection signatures for balancing selection. We have included the genotyped data from 427 animals, including five taurines, two crossbreds, and eight Indian cattle breeds. For this study, we employed Tajima's D approach to identify signature regions undergoing balancing selection. Using the NCBI database, PANTHER 17.0, and CattleQTL database, the annotation was carried out after finding the relevant areas under balancing selection. The number of genomic regions undergoing balancing selection in Ayrshire, Brown-Swiss, Frieswal, Gir, Guernsey, Hariana, Holstein Friesian, Jersey, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, Tharparkar, and Vrindavani was 11, 13, 13, 19, 18, 11, 17, 14, 14, 12, 10, 12, 13, 13, and 11, respectively. We have observed multiple immune system-related genes going through balancing selection, including KIT, NFATC2, GBP4, LRRC32, SYT7, RAG1, RAG2, LOC513659, and ZBTB17. In our study, we found that the majority of the immune-related genes and a few genes associated with growth, reproduction, production, and adaptation are undergoing balancing selection.

11.
Gene ; 901: 148178, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242377

RESUMEN

The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.


Asunto(s)
Genómica , Endogamia , Humanos , Animales , Bovinos/genética , Homocigoto , Cruzamiento , Alelos , Polimorfismo de Nucleótido Simple , Genotipo , Proteínas ADAMTS/genética
12.
Trop Anim Health Prod ; 56(2): 46, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233536

RESUMEN

The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic "footprints" within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima's D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.


Asunto(s)
Resiliencia Psicológica , Termotolerancia , Bovinos/genética , Animales , Genoma , Selección Genética , Genotipo , Termotolerancia/genética , Polimorfismo de Nucleótido Simple
13.
Mol Biol Rep ; 51(1): 59, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165514

RESUMEN

BACKGROUND: The dairy industry has experienced significant economic losses as a result of mastitis, an inflammatory disease of cows, including both subclinical and clinical cases. Milk exosome microRNAs have gained attention due to their stable and selective wrapping nature, offering potential for the prognosis and diagnosis of bovine mastitis, the most common pathological condition of the mammary gland. METHODS AND RESULTS:  In the present investigation, the microRNA profile of milk exosomes was explored using high-throughput small RNA sequencing data in sub-clinical mastitic and healthy crossbred Vrindavani cattle. In both groups, 349 microRNAs were identified, with 238 (68.19%) microRNAs co-expressed; however, 35 and 76 distinct microRNAs were found in subclinical mastitic and healthy cattle, respectively. Differential expression analysis revealed 11 microRNAs upregulated, and 18 microRNAs were downregulated in sub-clinical mastitic cattle. The functional annotation of the target genes of differentially expressed known and novel microRNAs including bta-miR-375, bta-miR-199-5p and bta-miR-12030 reveals their involvement in the regulation of immune response and inflammatory mechanisms and could be involved in development of mastitis. CONCLUSIONS: The analysis of milk exosomal miRNAs cargos hold great promise as an approach to study the underlying molecular mechanisms associated with mastitis in high milk producing dairy cattle. Concurrently, the significantly downregulated miR-375 may upregulate key target genes, including CTLA4, IHH, IRF1, and IL7R. These genes are negative regulators of immune response pathways, which could be associated with impaired inflammatory mechanisms in mammary cells. According to the findings, bta-miR-375 could be a promising biomarker for the development of mastitis in dairy cattle.


Asunto(s)
Exosomas , Mastitis Bovina , MicroARNs , Femenino , Bovinos , Animales , Humanos , Leche , Mastitis Bovina/genética , Exosomas/genética , MicroARNs/genética
14.
Vet Res Commun ; 48(2): 941-953, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38017322

RESUMEN

The host genetic makeup plays a significant role in causing the within-breed variation among individuals after vaccination. The present study was undertaken to elucidate the genetic basis of differential immune response between high and low responder Landlly (Landrace X Ghurrah) piglets vis-à-vis CSF vaccination. For the purpose, E2 antibody response against CSF vaccination was estimated in sampled animals on the day of vaccination and 21-day post-vaccination as a measure of humoral immune response. Double-digestion restriction associated DNA (ddRAD) sequencing was undertaken on 96 randomly chosen Landlly piglets using Illumina HiSeq platform. SNP markers were called using standard methodology. Genome-wide association study (GWAS) was undertaken in PLINK program to identify the informative SNP markers significantly associated with differential immune response. The results revealed significant SNPs associated with E2 antibody response against CSF vaccination. The genome-wide informative SNPs for the humoral immune response against CSF vaccination were located on SSC10, SSC17, SSC9, SSC2, SSC3 and SSC6. The overlapping and flanking genes (500Kb upstream and downstream) of significant SNPs were CYB5R1, PCMTD2, WT1, IL9R, CD101, TMEM64, TLR6, PIGG, ADIPOR1, PRSS37, EIF3M, and DNAJC24. Functional enrichment and annotation analysis were undertaken for these genes in order to gain maximum insights into the association of these genes with immune system functionality in pigs. The genetic makeup was associated with differential immune response against CSF vaccination in Landlly piglets while the identified informative SNPs may be used as suitable markers for determining variation in host immune response against CSF vaccination in pigs.


Asunto(s)
Peste Porcina Clásica , Enfermedades de los Porcinos , Vacunas Virales , Humanos , Porcinos , Animales , Peste Porcina Clásica/prevención & control , Peste Porcina Clásica/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo/veterinaria , Estudio de Asociación del Genoma Completo/métodos , Inmunidad Humoral , Vacunación/veterinaria
15.
Gene ; 893: 147950, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37918549

RESUMEN

In the present study, the genetic diversity measures among four Indian domestic breeds of pig namely Agonda Goan, Ghurrah, Ghungroo, and Nicobari, of different agro-climatic regions of country were explored and compared with European commercial breeds, European wild boar and Chinese domestic breeds. The double digest restriction site-associated DNA sequencing (ddRADseq) data of Indian pigs (102) and Landrace (10 animals) were generated and whole genome sequencing data of exotic pigs (60 animals) from public data repository were used in the study. The principal component analysis (PCA), admixture analysis and phylogenetic analysis revealed that Indian breeds were closer in ancestry to Chinese breeds than European breeds. European breeds exhibited highest genetic diversity measures among all the considered breeds. Among Indian breeds, Agonda Goan and Ghurrah were found to be more genetically diverse than Nicobari and Ghungroo. The selection signature regions in Indian pigs were explored using iHS and XP-EHH, and during iHS analysis, it was observed that genes related to growth, reproduction, health, meat quality, sensory perception and behavior were found to be under selection pressure in Indian pig breeds. Strong selection signatures were recorded in 24.25-25.25 Mb region of SSC18, 123.25-124 Mb region of SSC15 and 118.75-119.5 Mb region of SSC2 in most of the Indian breeds upon pairwise comparison with European commercial breeds using XP-EHH. These regions were harboring some important genes such as EPHA4 for thermotolerance, TAS2R16, FEZF1, CADPS2 and PTPRZ1 for adaptability to scavenging system of rearing, TRIM36 and PGGT1B for disease resistance and CCDC112, PIAS1, FEM1B and ITGA11 for reproduction.


Asunto(s)
Genoma , Genómica , Porcinos , Animales , Filogenia , Análisis de Secuencia de ADN , Variación Genética , Polimorfismo de Nucleótido Simple , Selección Genética
16.
Waste Manag Res ; : 734242X231219627, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38158841

RESUMEN

In winter season, the burning of crop residues for ease of sowing the next crop, along with industrial emissions and vehicular pollution leads to settling of a thick layer of smog in northern part of India. Therefore, to understand the opinion of farmers regarding sustainable management of organic waste, the present study was conducted in Ludhiana district of Indian state of Punjab. An ex post facto research design was used and a total of 800 dairy farmers having significant crop area were selected randomly for the study, grouped equally as small and large dairy farmers. Results revealed that majority of farmers had a highly favourable opinion regarding organic waste management due to the fact that they were aware of the ill-effects of undesirable practices like crop residue burning. Further, to predict the farmers' opinion and the effect of independent variables on farmers' opinion, a multi-layer perceptron feed-forward deep neural network was developed with mean squared error of 0.036 and 0.137 for validation and training data sets respectively, marking a novel approach of analysing farmers' behaviour. The neural network highlighted that with increase in the magnitude of input variables, namely, education, experience in dairying, information source utilisation, knowledge regarding organic waste management, etc., the farmers' opinion regarding sustainable waste management increases. The study concluded with the impression that cognitive processes like education, information and knowledge play a significant role in forming the opinion of the farmers. Therefore, efforts focusing on enhancing cognition should be made for sustainable management of organic waste.

17.
Mamm Genome ; 34(4): 615-631, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37843569

RESUMEN

The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.


Asunto(s)
Genoma , Genómica , Bovinos/genética , Animales , Genoma/genética , Genotipo , Fenotipo , India , Polimorfismo de Nucleótido Simple
18.
BMC Genomics ; 24(1): 616, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845620

RESUMEN

BACKGROUND: Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS: Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION: The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.


Asunto(s)
Búfalos , Variaciones en el Número de Copia de ADN , Animales , Búfalos/genética , Genoma , Análisis de Secuencia de ADN , Genómica/métodos
19.
Anim Genet ; 54(6): 667-688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37710403

RESUMEN

Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.


Asunto(s)
Modelos Genéticos , Selección Genética , Animales , Alelos , Biología Computacional , Genómica , Genética de Población
20.
Gene ; 886: 147719, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37597708

RESUMEN

Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.


Asunto(s)
Animales Domésticos , Genómica , Animales , Animales Domésticos/genética , Ganado , Alelos , Animales Salvajes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA