Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(26): 33752-33762, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902888

RESUMEN

The sensitivity of ferroelectric domain walls to external stimuli makes them functional entities in nanoelectronic devices. Specifically, optically driven domain reconfiguration with in-plane polarization is advantageous and thus is highly sought. Here, we show the existence of in-plane polarized subdomains imitating a single domain state and reversible optical control of its domain wall movement in a single-crystal of ferroelectric BaTiO3. Similar optical control in the domain configuration of nonpolar ferroelastic material indicates that long-range ferroelectric polarization is not essential for the optical control of domain wall movement. Instead, flexoelectricity is found to be an essential ingredient for the optical control of the domain configuration, and hence, ferroelastic materials would be another possible candidate for nanoelectronic device applications.

2.
Phys Rev Lett ; 132(2): 026701, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277598

RESUMEN

Coupling of orbital degree of freedom with a spin exchange, i.e., Kugel-Khomskii-type interaction (KK), governs a host of material properties, including colossal magnetoresistance, enhanced magnetoelectric response, and photoinduced high-temperature magnetism. In general, KK-type interactions lead to deviation in experimental observables of coupled Hamiltonian near or below the magnetic transition. Using diffraction and spectroscopy experiments, here we report anomalous changes in lattice parameters, electronic states, spin dynamics, and phonons at four times the Néel transition temperature (T_{N}) in CrVO_{4}. The temperature is significantly higher than other d-orbital compounds such as manganites and vanadates, where effects are limited to near or below T_{N}. The experimental observations are rationalized using first-principles and Green's function-based phonon and spin simulations that show unprecedentedly strong KK-type interactions via a superexchange process and an orbital-selective spin-phonon coupling coefficient at least double the magnitude previously reported for strongly coupled spin-phonon systems. Our results present an opportunity to explore the effect of KK-type interactions and spin-phonon coupling well above T_{N} and possibly bring various properties closer to application, for example, strong room-temperature magnetoelectric coupling.

3.
Opt Lett ; 47(3): 489-492, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35103662

RESUMEN

The prevalent material design principles for optical thermometry primarily rely on thermally driven changes in the relative intensities of the thermally coupled levels (TCLs) of rare-earth-doped phosphor materials, where the maximum achievable sensitivity is limited by the energy gap between the TCLs. In this work, a new, to the best of our knowledge, approach to thermometric material design is proposed, which is based on temperature tuning of PL emission from the visible to the NIR region. We demonstrate a model ferroelectric phosphor, Eu3+-doped 0.94(Na1/2Bi1/2TiO3)-0.06(BaTiO3) (NBT-6BT), which, by virtue of the contrasting effects of temperature on PL signals from the host and Eu3+ intraband transitions, can achieve a relative thermal sensitivity as high as 3.05% K-1. This model system provides a promising alternative route for developing self-referencing optical thermometers with high thermal sensitivity and good signal discriminability.

4.
J Phys Condens Matter ; 33(12)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33373980

RESUMEN

Recently, CuO has been proposed as a potential multiferroic material with high transition temperature. Competing models based on spin current and ionic displacements are invoked to explain ferroelectricity in CuO. The theoretical model based on ionic displacement predicted very small displacement (∼10-5Å) along thebaxis. Experimentally detecting displacements of such a small amplitude in a particular direction is extremely challenging. Through our detailed angle resolved polarized Raman spectroscopy study on single crystal of CuO, we have validated the theoretical study and provided direct evidence of displacement along thebaxis. Our study provides important contribution in the high temperature multiferroic compounds and showed for the first time, the use of the polarized Raman scattering in detecting ionic displacements at the femtometer scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...