Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
2.
Artículo en Inglés | MEDLINE | ID: mdl-38963553

RESUMEN

RATIONALE: Our study aimed to unravel the unknown mechanisms behind the exceptional efficacy of Psilocybin (PSI) in treating treatment-resistant depression (TRD). Focusing on Wistar-Kyoto (WKY) rats with a TRD phenotype and Wistar (WIS) rats as a normative comparison, we investigated behavioral and neuroplasticity-related responses to PSI, striving to shed light on the distinctive features of its antidepressant effects. OBJECTIVES: We set out to assess the behavioral impact of acute and prolonged PSI administration on WKY and WIS rats, employing Novel Object Recognition (NORT), Social Interaction (SI), and Forced Swimming Test (FST). Our secondary objectives involved exploring strain-specific alterations in neuroplasticity-related parameters, including brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated protein (Arc). METHODS: Conducting post-acute and extended assessments after a single PSI administration, we applied behavioral tests and biochemical analyses to measure serum BDNF levels and neuroplasticity-related parameters in the prefrontal cortex. Statistical analyses were deployed to discern significant differences between the rat strains and assess the impact of PSI on behavioral and biochemical outcomes. RESULTS: Our findings uncovered significant behavioral disparities between WKY and WIS rats, indicating passive behavior and social withdrawal in the former. PSI demonstrated pronounced pro-social and antidepressant effects in both strains, each with its distinctive temporal trajectory. Notably, we identified strain-specific variations in BDNF-related signaling and observed the modulation of Arc expression in WKY rats. CONCLUSIONS: Our study delineated mood-related behavioral nuances between WKY and WIS rat strains, underscoring the antidepressant and pro-social properties of PSI in both groups. The distinct temporal patterns of observed changes and the identified strain-specific neuroplasticity alterations provide valuable insights into the TRD phenotype and the mechanisms underpinning the efficacy of PSI.

3.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542063

RESUMEN

Numerous studies highlight the therapeutic potential of G protein-coupled receptor (GPCR) heterodimers, emphasizing their significance in various pathological contexts. Despite extensive basic research and promising outcomes in animal models, the translation of GPCR heterodimer-targeting drugs into clinical use remains limited. The complexities of in vivo conditions, particularly within thecomplex central nervous system, pose challenges in fully replicating physiological environments, hindering clinical success. This review discusses examples of the most studied heterodimers, their involvement in nervous system pathology, and the available data on their potential ligands. In addition, this review highlights the intricate interplay between lipids and GPCRs as a potential key factor in understanding the complexity of cell signaling. The multifaceted role of lipids in modulating the dynamics of GPCR dimerization is explored, shedding light on the elaborate molecular mechanisms governing these interactions.


Asunto(s)
Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Dimerización , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Lípidos
4.
Cell Signal ; 118: 111138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467243

RESUMEN

Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gßγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Transducción de Señal , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Membrana Celular/metabolismo
5.
Cell Commun Signal ; 21(1): 279, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817242

RESUMEN

BACKGROUND: Specific interactions between G protein-coupled receptors (GPCRs) and G proteins play a key role in mediating signaling events. While there is little doubt regarding receptor preference for Gα subunits, the preferences for specific Gß and Gγ subunits and the effects of different Gßγ dimer compositions on GPCR signaling are poorly understood. In this study, we aimed to investigate the subcellular localization and functional response of Gαi3-based heterotrimers with different combinations of Gß and Gγ subunits. METHODS: Live-cell imaging microscopy and colocalization analysis were used to investigate the subcellular localization of Gαi3 in combination with Gß1 or Gß2 heterotrimers, along with representative Gγ subunits. Furthermore, fluorescence lifetime imaging microscopy (FLIM-FRET) was used to investigate the nanoscale distribution of Gαi3-based heterotrimers in the plasma membrane, specifically with the dopamine D2 receptor (D2R). In addition, the functional response of the system was assessed by monitoring intracellular cAMP levels and conducting bioinformatics analysis to further characterize the heterotrimer complexes. RESULTS: Our results show that Gαi3 heterotrimers mainly localize to the plasma membrane, although the degree of colocalization is influenced by the accompanying Gß and Gγ subunits. Heterotrimers containing Gß2 showed slightly lower membrane localization compared to those containing Gß1, but certain combinations, such as Gαi3ß2γ8 and Gαi3ß2γ10, deviated from this trend. Examination of the spatial arrangement of Gαi3 in relation to D2R and of changes in intracellular cAMP level showed that the strongest functional response is observed for those trimers for which the distance between the receptor and the Gα subunit is smallest, i.e. complexes containing Gß1 and Gγ8 or Gγ10 subunit. Deprivation of Gαi3 lipid modifications resulted in a significant decrease in the amount of protein present in the cell membrane, but did not always affect intracellular cAMP levels. CONCLUSION: Our studies show that the composition of G protein heterotrimers has a significant impact on the strength and specificity of GPCR-mediated signaling. Different heterotrimers may exhibit different conformations, which further affects the interactions of heterotrimers and GPCRs, as well as their interactions with membrane lipids. This study contributes to the understanding of the complex signaling mechanisms underlying GPCR-G-protein interactions and highlights the importance of the diversity of Gß and Gγ subunits in G-protein signaling pathways. Video Abstract.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Transducción de Señal , Proteínas Portadoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
J Mol Recognit ; 36(10): e3052, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37610054

RESUMEN

ß-Lactoglobulin (BLG) is a member of the lipocalin family. As other proteins from this group, BLG can be modified to bind specifically compounds of medical interests. The aim of this study was to evaluate the role of two mutations, L39Y and L58F, in the binding of topical anesthetic pramoxine (PRM) to ß-lactoglobulin. Circular dichroism spectroscopy, isothermal titration calorimetry (ITC), and X-ray crystallography were used to understand the mechanisms of BLG-PRM interactions. Studies were performed for three new BLG mutants: L39Y, L58F, and L39Y/L58F. ITC measurements indicated a significant increase in the affinity to the PRM of variants L58F and L39Y. Measurements taken for the double mutant L39Y/L58F showed the additivity of two mutations leading to about 80-fold increase in the affinity to PRM in comparison to natural protein BLG from bovine milk. The determined crystal structures revealed that pramoxine is accommodated in the ß-barrel interior of BLG mutants and stabilized by hydrophobic interactions. The observed additive effect of two mutations on drug binding opens the possibility for further designing of new BLG variants with high affinity to selected drugs.


Asunto(s)
Lactoglobulinas , Biofisica , Calorimetría , Cristalografía por Rayos X , Lactoglobulinas/genética
7.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36983013

RESUMEN

Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3H] methylspiperone to the dopamine D2 receptor, specifically in that brain region-but not in the striatum, nor the nucleus accumbens-in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., ßarrestin2, glycogen synthase kinase 3 beta-Gsk-3ß, and ß-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the ßarrestin2/AKT/Gsk-3ß/ß-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype.


Asunto(s)
Receptores de Dopamina D2 , beta Catenina , Ratas , Animales , Ratas Endogámicas WKY , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , beta Catenina/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Corteza Prefrontal/metabolismo , Ratas Wistar
8.
Pharmacol Rep ; 75(2): 474-481, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36964420

RESUMEN

BACKGROUND: According to the World Health Organization Report, depressive disorders affect about 10% of the population. The molecular mechanism of the pathogenesis of depression is still not well understood. The new findings point to phosphatases as potential targets for effective depression therapy. The aim of the present work was the development of a method that would enable the identification of mitogen-activated protein kinase phosphatase-1 (MKP-1) protein partners using a proteomic approach. METHODS: The research was carried out using the PC12 cell line, often used as a model for neurobiological research. The use of the procedure for efficient purification of protein complexes-tandem affinity purification (TAP) will facilitate the identification of proteins interacting with MKP-1, a potential goal of effective antidepressant therapy. RESULTS: Identified proteins belong to various groups: cytoskeletal, ribosomal, nucleic acid binding, chaperones, and enzymes and may potentially be involved in the molecular mechanism of depression. CONCLUSIONS: The presented protocol for the purification of protein complexes is universal and can be successfully used in different mammalian cell lines. Proteins identified in the present work have been reported in the literature concerning studies on depressive disorders, which speaks in favour of their role in depression.


Asunto(s)
Proteínas Tirosina Fosfatasas , Purificación por Afinidad en Tándem , Animales , Ratas , Mamíferos/metabolismo , Espectrometría de Masas , Células PC12 , Proteómica , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-36833950

RESUMEN

The most important and widely studied role of prolactin (PRL) is its modulation of stress responses during pregnancy and lactation. PRL acts as a neuropeptide to support physiological reproductive responses. The effects of PRL on the nervous system contribute to a wide range of changes in the female brain during pregnancy and the inhibition of the hypothalamic-pituitary axis. All these changes contribute to the behavioral and physiological adaptations of a young mother to enable reproductive success. PRL-driven brain adaptations are also crucial for regulating maternal emotionality and well-being. Hyperprolactinemia (elevated PRL levels) is a natural and beneficial phenomenon during pregnancy and lactation. However, in other situations, it is often associated with serious endocrine disorders, such as ovulation suppression, which results in a lack of offspring. This introductory example shows how complex this hormone is. In this review, we focus on the different roles of PRL in the body and emphasize the results obtained from animal models of neuropsychiatric disorders.


Asunto(s)
Hiperprolactinemia , Prolactina , Embarazo , Animales , Femenino , Prolactina/fisiología , Lactancia/fisiología
10.
Mol Neurobiol ; 60(2): 643-654, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36344870

RESUMEN

The mechanisms of treatment-resistant depression (TRD) are not clear and are difficult to study. An animal model resembling human TRD is the Wistar Kyoto rat strain. In the present study, we focused on selecting miRNAs that differentiate rats of the WKY strain from Wistar Han (WIS) rats in two divisions of the habenula, the lateral and medial (LHb and MHb, respectively). Based on our preliminary study and literature survey, we identified 32 miRNAs that could be potentially regulated in the habenula. Six miRNAs significantly differentiated WKY rats from WIS rats within the MHb, and three significantly differentiated WKY from WIS rats within the LHb. Then, we selected relevant transcripts regulated by those miRNAs, and their expression in the habenular nuclei was investigated. For mRNAs that differentiated WKY rats from WIS rats in the MHb (Cdkn1c, Htr7, Kcnj9, and Slc12a5), their lower expression correlated with a higher level of relevant miRNAs. In the LHb, eight mRNAs significantly differentiated WKY from WIS rats (upregulated Htr4, Drd2, Kcnj5, and Sstr4 and downregulated Htr2a, Htr7, Elk4, and Slc12a5). These data indicate that several important miRNAs are expressed in the habenula, which differentiates WKY rats from WIS rats and in turn correlates with alterations in the expression of target transcripts. Of particular note are two genes whose expression is altered in WKY rats in both LHb and MHb: Slc12a5 and Htr7. Regulation of KCC2 via the 5-HT7 receptor may be a potential target for the treatment of TRD.


Asunto(s)
Habénula , MicroARNs , Animales , Ratas , Depresión , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Habénula/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , Ratas Endogámicas WKY
11.
Biochim Biophys Acta Gene Regul Mech ; 1866(1): 194905, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36581245

RESUMEN

Human protein Yin Yang 1 (YY1) controls the transcription of hundreds of genes both positively and negatively through interactions with a wide range of partner proteins. Results presented here from proteolytic sensitivity, calorimetry, circular dichroism, fluorescence, NMR, size-exclusion chromatography, SELEX, and EMSA show that purified YY1 forms dimers via its disordered N-terminal region with strong zinc-ion concentration dependence. The YY1 dimer is shown to bind tandem repeats of a canonical recognition DNA sequence with high affinity, and analysis of human YY1 regulatory sites shows that many contain repeats of its recognition elements. YY1 dimerization may compete with partner protein interactions, making control by zinc ion concentration a previously unrecognized factor affecting YY1 gene regulation. Indeed, YY1 is known to be important in many pathogenic processes, including neoplasia, in which zinc ion concentrations are altered. The present results incentivize studies in vivo or in vitro that explore the role of zinc ion concentration in YY1-mediated gene expression.


Asunto(s)
Factor de Transcripción YY1 , Zinc , Humanos , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Zinc/metabolismo , Dimerización , Regulación de la Expresión Génica , Secuencia de Bases
12.
Pharmacol Rep ; 74(5): 1107-1114, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36018449

RESUMEN

BACKGROUND: Our earlier studies have shown that the brain noradrenergic system regulates cytochrome P450 (CYP) in rat liver via neuroendocrine mechanism. In the present work, a comparative study on the effect of intraperitoneal administration of the noradrenergic neurotoxin DSP-4 and the knockout of noradrenaline transporter (NET-KO) on the CYP3A in the liver of male and female mice was performed. METHODS: The experiments were conducted on C57BL/6J WT and NET-/- male/female mice. DSP-4 was injected intraperitoneally as a single dose (50 mg/kg ip.) to WT mice. The activity of CYP3A was measured as the rate of 6ß-hydroxylation of testosterone in liver microsomes. The CYP3A protein level was estimated by Western blotting. RESULTS: DSP-4 evoked a selective decrease in the noradrenaline level in the brain of male and female mice. At the same time, DSP-4 reduced the CYP3A activity in males, but not in females. The level of CYP3A protein was not changed. The NET knockout did not affect the CYP3A activity/protein in both sexes. CONCLUSIONS: The results with DSP-4 treated mice showed sex-dependent differences in the regulation of liver CYP3A by the brain noradrenergic system (with only males being responsive), and revealed that the NET knockout did not affect CYP3A in both sexes. Further studies into the hypothalamic-pituitary-gonadal hormones in DSP-4 treated mice may explain sex-specific differences in CYP3A regulation, whereas investigation of monoaminergic receptor sensitivity in the hypothalamic/pituitary areas of NET-/- mice will allow for understanding a lack of changes in the CYP3A activity in the NET-KO animals.


Asunto(s)
Citocromo P-450 CYP3A , Neurotoxinas , Ratas , Animales , Ratones , Femenino , Masculino , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Microsomas Hepáticos/metabolismo , Hígado , Testosterona/metabolismo
13.
Biomolecules ; 12(6)2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35740874

RESUMEN

Targeted therapy uses multiple ways of ensuring that the drug will be delivered to the desired site. One of these ways is an encapsulation of the drug and functionalization of the surface. Among the many molecules that can perform such a task, the present work focused on the antibodies of single-chain variable fragments (scFvs format). We studied scFv, which specifically recognizes the dopamine D2 and serotonin 5-HT1A receptor heteromers. The scFvD2-5-HT1A protein was analyzed biochemically and biologically, and the obtained results indicated that the antibody is properly folded and non-toxic and can be described as low-immunogenic. It is not only able to bind to the D2-5-HT1A receptor heteromer, but it also influences the cAMP signaling pathway and-when surfaced on nanogold particles-it can cross the blood-brain barrier in in vitro models. When administered to mice, it decreased locomotor activity, matching the effect induced by clozapine. Thus, we are strongly convinced that scFvD2-5-HT1A, which was a subject of the present investigation, is a promising targeting ligand with the potential for the functionalization of nanocarriers targeting selected areas of the brain.


Asunto(s)
Antipsicóticos , Portadores de Fármacos , Receptor de Serotonina 5-HT1A , Receptores de Dopamina D2 , Anticuerpos de Cadena Única , Animales , Antipsicóticos/farmacología , Encéfalo/metabolismo , Dopamina/metabolismo , Ligandos , Ratones , Receptor de Serotonina 5-HT1A/metabolismo , Receptores de Dopamina D2/metabolismo
14.
Brain Res ; 1789: 147948, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35597327

RESUMEN

Given the important role of brain-derived neurotrophic factor (BDNF)-mediated Trkß signalling in the mechanism of action of antidepressants (ADs), we examined ligand-receptor interactions in the rat cingulate cortex using a proximity ligation assay (PLA) in response to acute and repeated administration of imipramine (IMI), followed by various drug-free periods. Both the acute and chronic administration of IMI increased the BDNF-Trkß interaction observed 3 h after drug administration. Withdrawal of IMI for 72 h or 7 days did not alter BDNF-Trkß interaction. A significant reduction in this interaction after chronic IMI administration followed by 21 drug-free days was observed, but it returned to the control value when a new dose of IMI was given after this time. The level of mRNA encoding BDNF or Trkß did not change in the experimental groups of animals, so one can conclude that alterations in the BDNF-Trkß interaction depend not on acute vs. repeated treatment with IMI but on the presence of the drug in the body. This effect correlates well with the strong pro-cognitive effect of acute IMI, assessed by the novel object recognition (NOR) test.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cognición , Imipramina , Receptor trkB , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cognición/efectos de los fármacos , Imipramina/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptor trkB/genética , Receptor trkB/metabolismo
15.
Biophys Chem ; 283: 106770, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35124407

RESUMEN

ß-Lactoglobulin (BLG), a member of the lipocalin family, is a well-studied model protein. It is also widely used as a scaffold for the development of novel proteins. Our previous work adopted a rational approach based on homolog structure alignment to obtain several BLG variants with point mutations inside the binding pocket. To investigate the effect of mutation on ligand binding thermodynamics, we chose a set of aliphatic ligands and performed a study based on isothermal titration calorimetry. In addition, the circular dichroism spectra observed for the protein-ligand complexes were analyzed. The ligand binding thermodynamics was compared between wild-type and mutated BLG as well as between two ligands. The findings pointed to factors that can be responsible for the mutation-induced changes in the thermodynamics of the complexes.


Asunto(s)
Lactoglobulinas , Calorimetría/métodos , Lactoglobulinas/química , Lactoglobulinas/genética , Ligandos , Unión Proteica , Termodinámica
16.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34830086

RESUMEN

BACKGROUND: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm-acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). METHODS: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. RESULTS: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, ßarrestin1, ßarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased ßarrestin1 and ERK1/2. KET treatment induced the upregulation of ßarrestin1. Joint administration of these drugs had no effect on the ßarrestin1 level. CONCLUSION: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.


Asunto(s)
Clozapina/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Ketamina/efectos adversos , Receptores Acoplados a Proteínas G , Animales , Biomarcadores/metabolismo , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Ketamina/farmacología , Masculino , Ratones , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/genética
17.
Int J Mol Sci ; 22(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502349

RESUMEN

Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress-coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, showed that, among others, two additional mRNAs were regulated by mmu-let-7e, i.e., mRNAs that encode Kmt2d and Inf2. Since an increase in Bcl2l11 and Pik3r1 mRNAs upon RS in the PFC of WT mice resulted from the decrease in mmu-let-7e and mmu-miR-484 regulations, we postulated that MAPK, FoxO and PI3K-Akt signaling pathways were associated with stress resilience, although via different, genotype-dependent regulation of various mRNAs by let-7e and miR-484. However, a higher level of Kmt2d mRNA (regulated by let-7e) that was found with NGS analysis in the PFC of NET-KO mice indicated that histone methylation was also important for stress resilience.


Asunto(s)
MicroARNs/genética , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-ets/fisiología , Resiliencia Psicológica , Animales , Femenino , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Restricción Física , Transducción de Señal
18.
Cells ; 10(7)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209787

RESUMEN

Long-lasting stress factors, both biological and psychological, are commonly accepted as the main cause of depressive disorders. Several animal models, using various stressful stimuli, have been used to find biochemical and molecular alterations that could help us understand the etiopathogenesis of depression. However, recent sophisticated studies indicate that the most frequently used animal models of stress only capture a portion of the molecular features associated with complex human disorders. On the other hand, some of these models generate groups of animals resilient to stress. Studies of the mechanisms of stress resilience bring us closer to understanding the process of adapting to aversive stimuli and the differences between stress-susceptible vs. resilient phenotypes. Especially interesting in this context is the chronic mild stress (CMS) experimental paradigm, most often using rats. Studies using this animal model have revealed that biochemical (e.g., the dopamine D2 receptor) and molecular (e.g., microRNA) alterations are dynamic (i.e., depend on stress duration, 2 vs. 7 weeks) and much more pronounced in stress-resilient than stress-susceptible groups of animals. We strongly suggest that studies aimed at understanding the molecular and biochemical mechanisms of depression must consider these dynamics. A good candidate to serve as a biomarker in such studies might be serum microRNA, since it can be obtained relatively easily from living individuals at various time points.


Asunto(s)
Adaptación Psicológica , Estrés Psicológico/fisiopatología , Animales , Biomarcadores/metabolismo , Depresión/psicología , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Estrés Psicológico/genética
19.
Neurochem Res ; 46(8): 2097-2111, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34024016

RESUMEN

Although antipsychotics are routinely used in the treatment of schizophrenia for the last decades, their precise mechanism of action is still unclear. In this study, we investigated changes in the PC12 cells' proteome under the influence of clozapine, risperidone, and haloperidol to identify protein pathways regulated by antipsychotics. Analysis of the protein profiles in two time points: after 12 and 24 h of incubation with drugs revealed significant alterations in 510 proteins. Further canonical pathway analysis revealed an inhibition of ciliary trophic factor signaling after treatment with haloperidol and showed a decrease in acute phase response signaling in the risperidone group. Interestingly, all tested drugs have caused changes in PC12 proteome which correspond to inhibition of cytokines: tumor necrosis factor (TNF) and transforming growth factor beta 1 (TGF-ß1). We also found that the 12-h incubation with clozapine caused up-regulation of protein kinase A signaling and translation machinery. After 24 h of treatment with clozapine, the inhibition of the actin cytoskeleton signaling and Rho proteins signaling was revealed. The obtained results suggest that the mammalian target of rapamycin complex 1 (mTORC1) and 2 (mTORC2) play a central role in the signal transduction of clozapine.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Antipsicóticos/farmacología , Clozapina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteoma/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Reacción de Fase Aguda/metabolismo , Animales , Factor Neurotrófico Ciliar/metabolismo , Haloperidol/farmacología , Células PC12 , Proteoma/metabolismo , Ratas , Risperidona/farmacología , Proteínas de Unión al GTP rho/metabolismo
20.
Biochim Biophys Acta Biomembr ; 1863(9): 183649, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991503

RESUMEN

The potential-sensitive di-4-ANEPPDHQ dye is presently gaining popularity in structural studies of the lipid bilayer. Within the bilayer, dye environmental sensitivity originates from the excitation induced charge redistribution and is usually attributed to solvent relaxation. Here, di-4-ANEPPDHQ is utilized to compare the structure of neutral and negatively charged lipid bilayers between two model systems: the nanodiscs and the liposomes. Using the well-established approach of measuring solvatochromic shifts of the steady-state spectra to study the bilayer structural changes has proved insufficient in this case. By applying an in-depth analysis of time-resolved fluorescence decays and emission spectra, we distinguished and characterized two and three distinct emissive di-4-ANEPPDHQ species in the liposomes and the nanodiscs, respectively. These emissive species were ascribed to the dual emission of the dye rather than to solvent relaxation. An additional, long-lived component present in the nanodiscs was associated with a unique domain of high order, postulated recently. Our results reveal that the di-4-ANEPPDHQ steady-state fluorescence should be interpreted with caution. With the experimental approach presented here, the di-4-ANEPPDHQ sensitivity was improved. We confirmed that the bilayer structure is, indeed, altered in the nanodiscs. Moreover, molecular dynamic simulations showed a distribution of the probe in the nanodiscs plane, which is sensitive to lipid composition. In POPC nanodiscs, probe frequently interacts with MSP, while in POPC-POPG nanodiscs, such interactions are rare. We did not observe, however, any impact of those interactions on the probe fluorescence.


Asunto(s)
Colorantes Fluorescentes/química , Nanopartículas/química , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Compuestos de Piridinio/química , Liposomas/química , Simulación de Dinámica Molecular , Estructura Molecular , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA