Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(5): 2337-2346, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086667

RESUMEN

The recent synthesis of a two-dimensional quasi-hexagonal-phase monolayer network of C60 molecules, known as qHPC60, holds significant promise for future semiconductor applications. However, the mechanism behind charge transport in these networks remains unknown. In this study, we developed a Holstein-Peierls Hamiltonian model to investigate charge transport in qHPC60, incorporating both local and non-local electron-phonon couplings. Our computational approach involved identifying suitable semi-empirical parameters to realize the formation of stable polarons in this material. The results unveiled the formation of stable large polarons as the primary carriers in the charge transport throughout qHPC60. To explore polaron transport properties, we conducted dynamic simulations within the picosecond time scale while subjecting the system to an external electric field. Our analysis emphasized the substantial influence of anisotropy on shaping mobile polarons, with an anisotropy coefficient of at least 50%. The polarons exhibited velocities within the acoustic regime ranging from 0.5-1.5 nm ps-1. While these velocities are comparable to those observed in high-end organic molecular crystals, they are considerably lower than those in graphene and conducting polymers. With qHPC60 possessing a semiconducting band gap of approximately 1.6 eV, our findings shed light on its potential application in flat electronics, overcoming the null-gap predicament of graphene.

2.
J Chem Phys ; 141(13): 134309, 2014 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-25296808

RESUMEN

We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H2O2-Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H2O2 molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H2O2 molecule, or other systems involving O-O and S-S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O-H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.

3.
J Phys Chem Lett ; 3(20): 3039-42, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-26292246

RESUMEN

We report the effects of electron-lattice coupling on the charge density distribution study of armchair graphene nanoribbons (GNRs). Here, we perform a theoretical investigation explaining the unexpected electronic density states observed experimentally. By means of a tight-binding approach with electron-lattice coupling, we obtained the same characteristic pattern of charge density along the C-C bonds suggested by both scanning tunneling and transmission electron microscopic measurements. Our results suggest electronic localized states whose sizes are dependent on the GNR width. We also show that our model rescues the quasi-particle charge-transport mechanism in GNRs. The remarkable agreement with experimental evidence allows us to conclude that our model could be, in many aspects, a fundamental tool when it comes to the phenomenological understanding of the charge behavior in this kind of system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...