Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Eur J Med Chem ; 271: 116357, 2024 May 05.
Article En | MEDLINE | ID: mdl-38636130

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was potently inhibited as an off-target kinase. The oxindole has long been considered a promiscuous kinase inhibitor template, but across these four specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different ranging from narrow to broad spectrum kinome coverage. We synthesized a large series of analogues, utilizing quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, kinome profiling, and small-molecule x-ray structural analysis to optimize TLK2 inhibition and kinome selectivity. This resulted in the identification of several narrow spectrum, sub-family selective, chemical tool compounds including 128 (UNC-CA2-103) that could enable elucidation of TLK2 biology.


Drug Discovery , Protein Kinase Inhibitors , Quantitative Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Humans , Molecular Structure , Oxindoles/pharmacology , Oxindoles/chemistry , Oxindoles/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Dose-Response Relationship, Drug , Models, Molecular
2.
bioRxiv ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38659941

In search for broad-spectrum antivirals, we discovered a small molecule inhibitor, RMC-113, that potently suppresses the replication of multiple RNA viruses including SARS-CoV-2 in human lung organoids. We demonstrated selective dual inhibition of the lipid kinases PIP4K2C and PIKfyve by RMC-113 and target engagement by its clickable analog. Advanced lipidomics revealed alteration of SARS-CoV-2-induced phosphoinositide signature by RMC-113 and linked its antiviral effect with functional PIP4K2C and PIKfyve inhibition. We discovered PIP4K2C's roles in SARS-CoV-2 entry, RNA replication, and assembly/egress, validating it as a druggable antiviral target. Integrating proteomics, single-cell transcriptomics, and functional assays revealed that PIP4K2C binds SARS-CoV-2 nonstructural protein 6 and regulates virus-induced impairment of autophagic flux. Reversing this autophagic flux impairment is a mechanism of antiviral action of RMC-113. These findings reveal virus-induced autophagy regulation via PIP4K2C, an understudied kinase, and propose dual inhibition of PIP4K2C and PIKfyve as a candidate strategy to combat emerging viruses.

3.
Pac Symp Biocomput ; 29: 276-290, 2024.
Article En | MEDLINE | ID: mdl-38160286

Protein kinases are a primary focus in targeted therapy development for cancer, owing to their role as regulators in nearly all areas of cell life. Recent strategies targeting the kinome with combination therapies have shown promise, such as trametinib and dabrafenib in advanced melanoma, but empirical design for less characterized pathways remains a challenge. Computational combination screening is an attractive alternative, allowing in-silico filtering prior to experimental testing of drastically fewer leads, increasing efficiency and effectiveness of drug development pipelines. In this work, we generated combined kinome inhibition states of 40,000 kinase inhibitor combinations from kinobeads-based kinome profiling across 64 doses. We then integrated these with transcriptomics from CCLE to build machine learning models with elastic-net feature selection to predict cell line sensitivity across nine cancer types, with accuracy R2 ∼ 0.75-0.9. We then validated the model by using a PDX-derived TNBC cell line and saw good global accuracy (R2 ∼ 0.7) as well as high accuracy in predicting synergy using four popular metrics (R2 ∼ 0.9). Additionally, the model was able to predict a highly synergistic combination of trametinib and omipalisib for TNBC treatment, which incidentally was recently in phase I clinical trials. Our choice of tree-based models for greater interpretability allowed interrogation of highly predictive kinases in each cancer type, such as the MAPK, CDK, and STK kinases. Overall, these results suggest that kinome inhibition states of kinase inhibitor combinations are strongly predictive of cell line responses and have great potential for integration into computational drug screening pipelines. This approach may facilitate the identification of effective kinase inhibitor combinations and accelerate the development of novel cancer therapies, ultimately improving patient outcomes.


Antineoplastic Agents , Melanoma , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Computational Biology/methods , Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor
4.
Nat Chem Biol ; 19(2): 230-238, 2023 02.
Article En | MEDLINE | ID: mdl-36302899

Small-molecule tools have enabled mechanistic investigations and therapeutic targeting of the protein kinase-like (PKL) superfamily. However, such tools are still lacking for many PKL members, including the highly conserved and disease-related UbiB family. Here, we sought to develop and characterize an inhibitor for the archetypal UbiB member COQ8, whose function is essential for coenzyme Q (CoQ) biosynthesis. Guided by crystallography, activity assays and cellular CoQ measurements, we repurposed the 4-anilinoquinoline scaffold to selectively inhibit human COQ8A in cells. Our chemical tool promises to lend mechanistic insights into the activities of these widespread and understudied proteins and to offer potential therapeutic strategies for human diseases connected to their dysfunction.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/metabolism , Ubiquinone/pharmacology , Ubiquinone/chemistry , Saccharomyces cerevisiae Proteins/metabolism
5.
bioRxiv ; 2023 Dec 28.
Article En | MEDLINE | ID: mdl-38234837

The oxindole scaffold has been the center of several kinase drug discovery programs, some of which have led to approved medicines. A series of two oxindole matched pairs from the literature were identified where TLK2 was a potent off-target kinase. The oxindole has long been considered a promiscuous inhibitor template, but across these 4 specific literature oxindoles TLK2 activity was consistent, while the kinome profile was radically different from narrow to broad spectrum coverage. We synthesized a large series of analogues and through quantitative structure-activity relationship (QSAR) analysis, water mapping of the kinase ATP binding sites, small-molecule x-ray structural analysis and kinome profiling, narrow spectrum, sub-family selective, chemical tool compounds were identified to enable elucidation of TLK2 biology.

8.
ChemMedChem ; 17(12): e202200161, 2022 06 20.
Article En | MEDLINE | ID: mdl-35403825

Deep annotation of a library of 4-anilinoquin(az)olines led to the identification of 7-iodo-N-(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC50 =14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquin(az)olines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.


Prostatic Neoplasms , Protein Kinase Inhibitors , Humans , Male , Protein Kinase C , Protein Kinase Inhibitors/pharmacology
9.
J Biol Chem ; 298(2): 101525, 2022 02.
Article En | MEDLINE | ID: mdl-34958800

Pharmacological inhibition of protein kinases induces adaptive reprogramming of tumor cell regulatory networks by altering expression of genes that regulate signaling, including protein kinases. Adaptive responses are dependent on transcriptional changes resulting from remodeling of enhancer and promoter landscapes. Enhancer and promoter remodeling in response to targeted kinase inhibition is controlled by changes in open chromatin state and by activity of specific transcription factors, such as c-MYC. This review focuses on the dynamic plasticity of protein kinase expression of the tumor cell kinome and the resulting adaptive resistance to targeted kinase inhibition. Plasticity of the functional kinome has been shown in patient window trials where triple-negative and human epidermal growth factor receptor 2-positive breast cancer patient tumors were characterized by RNAseq after biopsies before and after 1 week of therapy. The expressed kinome changed dramatically during drug treatment, and these changes in kinase expression were shown in cell lines and xenografts in mice to be correlated with adaptive tumor cell drug resistance. The dynamic transcriptional nature of the kinome also differs for inhibitors targeting different kinase signaling pathways (e.g., BRAF-MEK-ERK versus PI3K-AKT) that are commonly activated in cancers. Heterogeneity arising from differences in gene regulation and mutations represents a challenge to therapeutic durability and prevention of clinical drug resistance with drug-tolerant tumor cell populations developing and persisting through treatment. We conclude that understanding the heterogeneity of kinase expression at baseline and in response to therapy is imperative for development of combinations and timing intervals of therapies making interventions durable.


Breast Neoplasms , Chromatin Assembly and Disassembly , Protein Kinase Inhibitors , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Female , Humans , Mice , Phosphatidylinositol 3-Kinases/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinases
10.
Mol Biol Cell ; 33(2): ar13, 2022 02 01.
Article En | MEDLINE | ID: mdl-34818063

ELMODs are a family of three mammalian paralogues that display GTPase-activating protein (GAP) activity toward a uniquely broad array of ADP-ribosylation factor (ARF) family GTPases that includes ARF-like (ARL) proteins. ELMODs are ubiquitously expressed in mammalian tissues, highly conserved across eukaryotes, and ancient in origin, being present in the last eukaryotic common ancestor. We described functions of ELMOD2 in immortalized mouse embryonic fibroblasts (MEFs) in the regulation of cell division, microtubules, ciliogenesis, and mitochondrial fusion. Here, using similar strategies with the paralogues ELMOD1 and ELMOD3, we identify novel functions and locations of these cell regulators and compare them to those of ELMOD2, allowing the determination of functional redundancy among the family members. We found strong similarities in phenotypes resulting from deletion of either Elmod1 or Elmod3 and marked differences from those arising in Elmod2 deletion lines. Deletion of either Elmod1 or Elmod3 results in the decreased ability of cells to form primary cilia, loss of a subset of proteins from cilia, and accumulation of some ciliary proteins at the Golgi, predicted to result from compromised traffic from the Golgi to cilia. These phenotypes are reversed upon activating mutant expression of either ARL3 or ARL16, linking their roles to ELMOD1/3 actions.


GTPase-Activating Proteins/metabolism , ADP-Ribosylation Factors/metabolism , Animals , Cilia/metabolism , Cytoskeletal Proteins/metabolism , Fibroblasts/metabolism , GTPase-Activating Proteins/physiology , Golgi Apparatus/metabolism , Mice , Microtubules/metabolism , Mitochondrial Dynamics , Signal Transduction/genetics
11.
Molecules ; 26(19)2021 Sep 29.
Article En | MEDLINE | ID: mdl-34641454

A focused series of substituted 4H-1,2,6-thiadiazin-4-ones was designed and synthesized to probe the anti-cancer properties of this scaffold. Insights from previous kinase inhibitor programs were used to carefully select several different substitution patterns. Compounds were tested on bladder, prostate, pancreatic, breast, chordoma, and lung cancer cell lines with an additional skin fibroblast cell line as a toxicity control. This resulted in the identification of several low single digit micro molar compounds with promising therapeutic windows, particularly for bladder and prostate cancer. A number of key structural features of the 4H-1,2,6-thiadiazin-4-one scaffold are discussed that show promising scope for future improvement.


Antineoplastic Agents/pharmacology , Drug Design , Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Thiadiazines/chemistry , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Structure-Activity Relationship , Tumor Cells, Cultured
12.
Anal Chem ; 93(41): 13791-13799, 2021 10 19.
Article En | MEDLINE | ID: mdl-34606255

Parallel reaction monitoring (PRM) has emerged as a popular approach for targeted protein quantification. With high ion utilization efficiency and first-in-class acquisition speed, the timsTOF Pro provides a powerful platform for PRM analysis. However, sporadic chromatographic drift in peptide retention time represents a fundamental limitation for the reproducible multiplexing of targets across PRM acquisitions. Here, we present PRM-LIVE, an extensible, Python-based acquisition engine for the timsTOF Pro, which dynamically adjusts detection windows for reproducible target scheduling. In this initial implementation, we used iRT peptides as retention time standards and demonstrated reproducible detection and quantification of 1857 tryptic peptides from the cell lysate in a 60 min PRM-LIVE acquisition. As an application in functional proteomics, we use PRM-LIVE in an activity-based protein profiling platform to assess binding selectivity of small-molecule inhibitors against 220 endogenous human kinases.


Ion Mobility Spectrometry , Proteomics , Humans , Mass Spectrometry , Peptides , Proteins
14.
NPJ Breast Cancer ; 7(1): 51, 2021 May 12.
Article En | MEDLINE | ID: mdl-33980863

Inhibition of the HER2/ERBB2 receptor is a keystone to treating HER2-positive malignancies, particularly breast cancer, but a significant fraction of HER2-positive (HER2+) breast cancers recur or fail to respond. Anti-HER2 monoclonal antibodies, like trastuzumab or pertuzumab, and ATP active site inhibitors like lapatinib, commonly lack durability because of adaptive changes in the tumor leading to resistance. HER2+ cell line responses to inhibition with lapatinib were analyzed by RNAseq and ChIPseq to characterize transcriptional and epigenetic changes. Motif analysis of lapatinib-responsive genomic regions implicated the pioneer transcription factor FOXA1 as a mediator of adaptive responses. Lapatinib in combination with FOXA1 depletion led to dysregulation of enhancers, impaired adaptive upregulation of HER3, and decreased proliferation. HER2-directed therapy using clinically relevant drugs (trastuzumab with or without lapatinib or pertuzumab) in a 7-day clinical trial designed to examine early pharmacodynamic response to antibody-based anti-HER2 therapy showed reduced FOXA1 expression was coincident with decreased HER2 and HER3 levels, decreased proliferation gene signatures, and increased immune gene signatures. This highlights the importance of the immune response to anti-HER2 antibodies and suggests that inhibiting FOXA1-mediated adaptive responses in combination with HER2 targeting is a potential therapeutic strategy.

17.
Mol Biol Cell ; 31(18): 2070-2091, 2020 08 15.
Article En | MEDLINE | ID: mdl-32614697

ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.


Cytokinesis/physiology , Cytoskeletal Proteins/metabolism , Microtubules/metabolism , ADP-Ribosylation Factors/metabolism , Animals , Cell Culture Techniques , Centrosome/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Fibroblasts/metabolism , GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/metabolism , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/metabolism , Mouse Embryonic Stem Cells/metabolism
18.
J Clin Invest ; 130(9): 4871-4887, 2020 09 01.
Article En | MEDLINE | ID: mdl-32573490

Mechanisms driving tumor progression from less aggressive subtypes to more aggressive states represent key targets for therapy. We identified a subset of luminal A primary breast tumors that give rise to HER2-enriched (HER2E) subtype metastases, but remain clinically HER2 negative (cHER2-). By testing the unique genetic and transcriptomic features of these cases, we developed the hypothesis that FGFR4 likely participates in this subtype switching. To evaluate this, we developed 2 FGFR4 genomic signatures using a patient-derived xenograft (PDX) model treated with an FGFR4 inhibitor, which inhibited PDX growth in vivo. Bulk tumor gene expression analysis and single-cell RNA sequencing demonstrated that the inhibition of FGFR4 signaling caused molecular switching. In the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) breast cancer cohort, FGFR4-induced and FGFR4-repressed signatures each predicted overall survival. Additionally, the FGFR4-induced signature was an independent prognostic factor beyond subtype and stage. Supervised analysis of 77 primary tumors with paired metastases revealed that the FGFR4-induced signature was significantly higher in luminal/ER+ tumor metastases compared with their primaries. Finally, multivariate analysis demonstrated that the FGFR4-induced signature also predicted site-specific metastasis for lung, liver, and brain, but not for bone or lymph nodes. These data identify a link between FGFR4-regulated genes and metastasis, suggesting treatment options for FGFR4-positive patients, whose high expression is not caused by mutation or amplification.


Breast Neoplasms , Cell Differentiation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Animals , Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Neoplasm Proteins/genetics , Receptor, Fibroblast Growth Factor, Type 4/genetics
20.
JCI Insight ; 5(8)2020 04 23.
Article En | MEDLINE | ID: mdl-32213714

Over 55,000 people in the United States are diagnosed with pancreatic ductal adenocarcinoma (PDAC) yearly, and fewer than 20% of these patients survive a year beyond diagnosis. Chemotherapies are considered or used in nearly every PDAC case, but there is limited understanding of the complex signaling responses underlying resistance to these common treatments. Here, we take an unbiased approach to study protein kinase network changes following chemotherapies in patient-derived xenograft (PDX) models of PDAC to facilitate design of rational drug combinations. Proteomics profiling following chemotherapy regimens reveals that activation of JNK-JUN signaling occurs after 5-fluorouracil plus leucovorin (5-FU + LEU) and FOLFOX (5-FU + LEU plus oxaliplatin [OX]), but not after OX alone or gemcitabine. Cell and tumor growth assays with the irreversible inhibitor JNK-IN-8 and genetic manipulations demonstrate that JNK and JUN each contribute to chemoresistance and cancer cell survival after FOLFOX. Active JNK1 and JUN are specifically implicated in these effects, and synergy with JNK-IN-8 is linked to FOLFOX-mediated JUN activation, cell cycle dysregulation, and DNA damage response. This study highlights the potential for JNK-IN-8 as a biological tool and potential combination therapy with FOLFOX in PDAC and reinforces the need to tailor treatment to functional characteristics of individual tumors.


Antineoplastic Agents/pharmacology , Carcinoma, Pancreatic Ductal , Drug Resistance, Neoplasm/drug effects , Pancreatic Neoplasms , Animals , Antineoplastic Combined Chemotherapy Protocols , Drug Evaluation, Preclinical , Fluorouracil/pharmacology , Humans , Leucovorin , MAP Kinase Kinase 4/antagonists & inhibitors , Mice , Mitogen-Activated Protein Kinase 8/antagonists & inhibitors , Organoplatinum Compounds , Xenograft Model Antitumor Assays
...