Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
J Gen Virol ; 104(8)2023 08.
Article En | MEDLINE | ID: mdl-37622664

In April 2023, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by one new family, 14 new genera, and 140 new species. Two genera and 538 species were renamed. One species was moved, and four were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Negative-Sense RNA Viruses , RNA Viruses , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/genetics
2.
Plants (Basel) ; 12(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36840067

Canola plants suffer severe crop yield and oil content reductions when exposed to water-deficit conditions, especially during the reproductive stages of plant development. There is a pressing need to develop canola cultivars that can perform better under increased water-deficit conditions with changing weather patterns. In this study, we analysed genetic determinants for the main effects of quantitative trait loci (QTL), (Q), and the interaction effects of QTL and Environment (QE) underlying seed yield and related traits utilising 223 doubled haploid (DH) lines of canola in well-watered and water-deficit conditions under a rainout shelter. Moderate water-deficit at the pre-flowering stage reduced the seed yield to 40.8%. Multi-environmental QTL analysis revealed 23 genomic regions associated with days to flower (DTF), plant height (PH) and seed yield (SY) under well-watered and water-deficit conditions. Three seed yield QTL for main effects were identified on chromosomes A09, C03, and C09, while two were related to QE interactions on A02 and C09. Two QTL regions were co-localised to similar genomic regions for flowering time and seed yield (A09) and the second for plant height and chlorophyll content. The A09 QTL was co-located with a previously mapped QTL for carbon isotope discrimination (Δ13C) that showed a positive relationship with seed yield in the same population. Opposite allelic effects for plasticity in seed yield were identified due to QE interactions in response to water stress on chromosomes A02 and C09. Our results showed that QTL's allelic effects for DTF, PH, and SY and their correlation with Δ13C are stable across environments (field conditions, previous study) and contrasting water regimes (this study). The QTL and DH lines that showed high yield under well-watered and water-deficit conditions could be used to manipulate water-use efficiency for breeding improved canola cultivars.

3.
Viruses ; 15(2)2023 02 11.
Article En | MEDLINE | ID: mdl-36851717

The SARS-CoV-2 pandemic commenced in 2019 and is still ongoing. Neither infection nor vaccination give long-lasting immunity and, here, in an attempt to understand why this might be, we have compared the neutralizing antibody responses to SARS-CoV-2 with those specific for human immunodeficiency virus type 1 (HIV-1) and respiratory syncytial virus (RSV). Currently, most of the antibodies specific for the SARS-CoV-2 S protein map to three broad antigenic sites, all at the distal end of the S trimer (receptor-binding site (RBD), sub-RBD and N-terminal domain), whereas the structurally similar HIV-1 and the RSV F envelope proteins have six antigenic sites. Thus, there may be several antigenic sites on the S trimer that have not yet been identified. The epitope mapping, quantitation and longevity of the SARS-CoV-2 S-protein-specific antibodies produced in response to infection and those elicited by vaccination are now being reported for specific groups of individuals, but much remains to be determined about these aspects of the host-virus interaction. Finally, there is a concern that the SARS-CoV-2 field may be reprising the HIV-1 experience, which, for many years, used a virus for neutralization studies that did not reflect the neutralizability of wild-type HIV-1. For example, the widely used VSV-SARS-CoV-2-S protein pseudotype has 10-fold more S trimers per virion and a different configuration of the trimers compared with the SARS-CoV-2 wild-type virus. Clarity in these areas would help in advancing understanding and aid countermeasures of the SARS-CoV-2 pandemic.


COVID-19 , HIV Infections , HIV-1 , Respiratory Syncytial Virus, Human , Humans , SARS-CoV-2 , Antibodies, Neutralizing
4.
Arch Virol ; 167(12): 2857-2906, 2022 Dec.
Article En | MEDLINE | ID: mdl-36437428

In March 2022, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by two new families (bunyaviral Discoviridae and Tulasviridae), 41 new genera, and 98 new species. Three hundred forty-nine species were renamed and/or moved. The accidentally misspelled names of seven species were corrected. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.


Mononegavirales , Viruses , Humans , Mononegavirales/genetics , Phylogeny
5.
Plant Cell Environ ; 45(7): 2019-2036, 2022 07.
Article En | MEDLINE | ID: mdl-35445756

Canola varieties exhibit variation in drought avoidance and drought escape traits, reflecting adaptation to water-deficit environments. Our understanding of underlying genes and their interaction across environments in improving crop productivity is limited. A doubled haploid population was analysed to identify quantitative trait loci (QTL) associated with water-use efficiency (WUE) related traits. High WUE in the vegetative phase was associated with low seed yield. Based on the resequenced parental genome data, we developed sequence-capture-based markers and validated their linkage with carbon isotope discrimination (Δ13 C) in an F2 population. RNA sequencing was performed to determine the expression of candidate genes underlying Δ13 C QTL. QTL contributing to main and QTL × environment interaction effects for Δ13 C and yield were identified. One multiple-trait QTL for Δ13 C, days to flower, plant height, and seed yield was identified on chromosome A09. Interestingly, this QTL region overlapped with a homoeologous exchange (HE) event, suggesting its association with the multiple traits. Transcriptome analysis revealed 121 significantly differentially expressed genes underlying Δ13 C QTL on A09 and C09, including in HE regions. Sorting out the negative relationship between vegetative WUE and seed yield is a priority. Genetic and genomic resources and knowledge so developed could improve canola WUE and yield.


Brassica napus , Quantitative Trait Loci , Brassica napus/genetics , Brassica napus/metabolism , Chromosome Mapping , Genetic Linkage , Phenotype , Quantitative Trait Loci/genetics , Seeds/genetics , Seeds/metabolism , Water/metabolism
6.
J Nanobiotechnology ; 19(1): 86, 2021 Mar 26.
Article En | MEDLINE | ID: mdl-33771172

The agricultural sector is currently facing many global challenges, such as climate change, and environmental problems such as the release of pesticides and fertilizers, which will be exacerbated in the face of population growth and food shortages. Therefore, the need to change traditional farming methods and replace them with new technologies is essential, and the application of nanotechnology, especially green technology offers considerable promise in alleviating these problems. Nanotechnology has led to changes and advances in many technologies and has the potential to transform various fields of the agricultural sector, including biosensors, pesticides, fertilizers, food packaging and other areas of the agricultural industry. Due to their unique properties, nanomaterials are considered as suitable carriers for stabilizing fertilizers and pesticides, as well as facilitating controlled nutrient transfer and increasing crop protection. The production of nanoparticles by physical and chemical methods requires the use of hazardous materials, advanced equipment, and has a negative impact on the environment. Thus, over the last decade, research activities in the context of nanotechnology have shifted towards environmentally friendly and economically viable 'green' synthesis to support the increasing use of nanoparticles in various industries. Green synthesis, as part of bio-inspired protocols, provides reliable and sustainable methods for the biosynthesis of nanoparticles by a wide range of microorganisms rather than current synthetic processes. Therefore, this field is developing rapidly and new methods in this field are constantly being invented to improve the properties of nanoparticles. In this review, we consider the latest advances and innovations in the production of metal nanoparticles using green synthesis by different groups of microorganisms and the application of these nanoparticles in various agricultural sectors to achieve food security, improve crop production and reduce the use of pesticides. In addition, the mechanism of synthesis of metal nanoparticles by different microorganisms and their advantages and disadvantages compared to other common methods are presented.


Agriculture/methods , Metal Nanoparticles , Nanotechnology/methods , Biosensing Techniques , Crop Protection , Fertilizers , Food Security , Fungicides, Industrial , Green Chemistry Technology , Nanostructures , Pesticides
7.
Nanomedicine (Lond) ; 16(6): 481-495, 2021 03.
Article En | MEDLINE | ID: mdl-33683147

Background: Exploration of the efficiency of metal nanoparticles as adjuvants have reported varying results. Objective: The efficacy of metal nanoparticles as adjuvants was investigated Data sources: Database were searched using the terms 'metal nanoparticles' and 'vaccines'. Study eligibility criteria: Studies in animal models utilizing any metal-based vaccines, where the survival rate was described. Study appraisal: The quality of the studies was examined using aspects of the ARRIVE guidelines and assessment of the risk of bias of included studies. Results: Metal nanoparticle-based adjuvants were more effective compared with control (unvaccinated groups) but have not been more successful in competing with common adjuvants or even antigens alone. Limitation: More than 75% of articles have used only gold nanoparticles. Conclusion: Nano-adjuvants do not have a significant effect on reducing mortality.


Communicable Diseases , Metal Nanoparticles , Vaccines , Adjuvants, Immunologic , Animals , Gold
8.
J Nanobiotechnology ; 19(1): 59, 2021 Feb 25.
Article En | MEDLINE | ID: mdl-33632278

Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.


COVID-19 Vaccines/therapeutic use , Antibodies, Neutralizing/immunology , COVID-19 Vaccines/biosynthesis , COVID-19 Vaccines/immunology , Humans , Immunity/physiology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Vaccination/methods , Vaccines, Virus-Like Particle/biosynthesis , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/therapeutic use
9.
Mucosal Immunol ; 14(1): 26-37, 2021 01.
Article En | MEDLINE | ID: mdl-32457448

Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.


Immunity, Innate , Lymphocytes/physiology , Macrophage Activation/immunology , Macrophages/physiology , Neutrophil Infiltration/immunology , Neutrophils/physiology , Ribonucleases/biosynthesis , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Immunomodulation , Immunophenotyping , Interleukin-13/biosynthesis , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Ribonucleases/genetics
10.
Funct Plant Biol ; 47(4): 355-367, 2020 03.
Article En | MEDLINE | ID: mdl-32130871

Drought is a major constraint to canola production around the world. There is potential for improving crop performance in dry environments by selecting for transpiration efficiency (TE). In this work we investigated TE by studying its genetic association with carbon isotope discrimination (Δ) and other traits, e.g. specific leaf weight (SLW) and leaf chlorophyll content (SPAD). Among the 106 canola genotypes - including open-pollinated, hybrid, inbred types and cytoplasmic variants - tested in the field and glasshouse there was significant genotypic variation for TE, Δ, plant total dry weight, SLW and SPAD. Strong negative correlations were observed between TE and Δ (-0.52 to -0.76). Negative correlations between Δ and SLW or SPAD (-0.43 to -0.78) and smaller but significant positive correlations between TE and SLW or SPAD (0.23 to 0.30) suggested that photosynthetic capacity was, in part, underpinning the variation in TE. A cytoplasmic contribution to genetic variation in TE or Δ in canola was also observed with Triazine tolerant types having low TE and high Δ. This study showed that Δ has great potential for selecting canola germplasm with improved TE.


Brassica napus , Plant Transpiration , Brassica napus/genetics , Carbon Isotopes , Genetic Variation , Plant Leaves/genetics
11.
J Gen Virol ; 100(12): 1593-1594, 2019 12.
Article En | MEDLINE | ID: mdl-31609197

The family Paramyxoviridae consists of large enveloped RNA viruses infecting mammals, birds, reptiles and fish. Many paramyxoviruses are host-specific and several, such as measles virus, mumps virus, Nipah virus, Hendra virus and several parainfluenza viruses, are pathogenic for humans. The transmission of paramyxoviruses is horizontal, mainly through airborne routes; no vectors are known. This is a summary of the current International Committee on Taxonomy of Viruses (ICTV) Report on the family Paramyxoviridae. which is available at ictv.global/report/paramyxoviridae.


DNA Barcoding, Taxonomic , Paramyxoviridae/classification , Paramyxoviridae/genetics , DNA Barcoding, Taxonomic/methods , Databases, Factual , Humans , Paramyxoviridae/physiology , Paramyxoviridae/ultrastructure , Web Browser
13.
Arch Virol ; 164(4): 1233-1244, 2019 Apr.
Article En | MEDLINE | ID: mdl-30663023

In October 2018, the order Mononegavirales was amended by the establishment of three new families and three new genera, abolishment of two genera, and creation of 28 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Mononegavirales/classification , Mononegavirales/genetics , Mononegavirales/isolation & purification , Phylogeny , Virology/organization & administration
14.
Arch Virol ; 163(8): 2283-2294, 2018 Aug.
Article En | MEDLINE | ID: mdl-29637429

In 2018, the order Mononegavirales was expanded by inclusion of 1 new genus and 12 novel species. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV) and summarizes additional taxonomic proposals that may affect the order in the near future.


Mononegavirales/classification , Animals , Humans , Mononegavirales/genetics , Mononegavirales/isolation & purification , Mononegavirales Infections/veterinary , Mononegavirales Infections/virology , Phylogeny
15.
Arch Virol ; 163(5): 1395-1404, 2018 May.
Article En | MEDLINE | ID: mdl-29372404

A number of unassigned viruses in the family Paramyxoviridae need to be classified either as a new genus or placed into one of the seven genera currently recognized in this family. Furthermore, numerous new paramyxoviruses continue to be discovered. However, attempts at classification have highlighted the difficulties that arise by applying historic criteria or criteria based on sequence alone to the classification of the viruses in this family. While the recent taxonomic change that elevated the previous subfamily Pneumovirinae into a separate family Pneumoviridae is readily justified on the basis of RNA dependent -RNA polymerase (RdRp or L protein) sequence motifs, using RdRp sequence comparisons for assignment to lower level taxa raises problems that would require an overhaul of the current criteria for assignment into genera in the family Paramyxoviridae. Arbitrary cut off points to delineate genera and species would have to be set if classification was based on the amino acid sequence of the RdRp alone or on pairwise analysis of sequence complementarity (PASC) of all open reading frames (ORFs). While these cut-offs cannot be made consistent with the current classification in this family, resorting to genus-level demarcation criteria with additional input from the biological context may afford a way forward. Such criteria would reflect the increasingly dynamic nature of virus taxonomy even if it would require a complete revision of the current classification.


Paramyxoviridae/classification , Phylogeny , Genome, Viral , Open Reading Frames , Paramyxoviridae/genetics , RNA-Dependent RNA Polymerase/genetics
17.
J Gen Virol ; 98(12): 2912-2913, 2017 Dec.
Article En | MEDLINE | ID: mdl-29087278

The family Pneumoviridae comprises large enveloped negative-sense RNA viruses. This taxon was formerly a subfamily within the Paramyxoviridae, but was reclassified in 2016 as a family with two genera, Orthopneumovirus and Metapneumovirus. Pneumoviruses infect a range of mammalian species, while some members of the Metapneumovirus genus may also infect birds. Some viruses are specific and pathogenic for humans, such as human respiratory syncytial virus and human metapneumovirus. There are no known vectors for pneumoviruses and transmission is thought to be primarily by aerosol droplets and contact. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Pneumoviridae, which is available at www.ictv.global/report/pneumoviridae.


RNA Virus Infections/veterinary , RNA Virus Infections/virology , RNA Viruses/classification , Animals , Birds/virology , Humans , Mammals/virology , RNA Viruses/genetics , RNA Viruses/isolation & purification , Virus Replication
18.
Viruses ; 9(10)2017 09 21.
Article En | MEDLINE | ID: mdl-28934167

The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.


Betainfluenzavirus/immunology , Defective Viruses/isolation & purification , Immunogenicity, Vaccine , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/prevention & control , RNA, Viral/isolation & purification , Animals , Chick Embryo , Genome, Viral , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , Betainfluenzavirus/genetics , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology
19.
Virol J ; 14(1): 138, 2017 07 24.
Article En | MEDLINE | ID: mdl-28738877

BACKGROUND: Defective interfering (DI) viruses are natural antivirals made by nearly all viruses. They have a highly deleted genome (thus being non-infectious) and interfere with the replication of genetically related infectious viruses. We have produced the first potential therapeutic DI virus for the clinic by cloning an influenza A DI RNA (1/244) which was derived naturally from genome segment 1. This is highly effective in vivo, and has unexpectedly broad-spectrum activity with two different modes of action: inhibiting influenza A viruses through RNA interference, and all other (interferon-sensitive) respiratory viruses through stimulating interferon type I. RESULTS: We have investigated the RNA inhibitory mechanism(s) of DI 1/244 RNA. Ablation of initiation codons does not diminish interference showing that no protein product is required for protection. Further analysis indicated that 1/244 DI RNA interferes by replacing the cognate full-length segment 1 RNA in progeny virions, while interfering with the expression of genome segment 1, its cognate RNA, and genome RNAs 2 and 3, but not genome RNA 6, a representative of the non-polymerase genes. CONCLUSIONS: Our data contradict the dogma that a DI RNA only interferes with expression from its cognate full-length segment. There is reciprocity as cloned segment 2 and 3 DI RNAs inhibited expression of RNAs from a segment 1 target. These data demonstrate an unexpected complexity in the mechanism of interference by this cloned therapeutic DI RNA.


Defective Viruses/genetics , Defective Viruses/isolation & purification , Influenza A virus/growth & development , Influenza A virus/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Defective Viruses/immunology , HEK293 Cells , Humans , Interferon Type I/metabolism , RNA Interference
20.
Sci Rep ; 7(1): 3472, 2017 06 14.
Article En | MEDLINE | ID: mdl-28615708

Pneumonia virus of mice (PVM) infection has been widely used as a rodent model to study the closely related human respiratory syncytial virus (hRSV). While T cells are indispensable for viral clearance, they also contribute to immunopathology. To gain more insight into mechanistic details, novel tools are needed that allow to study virus-specific T cells in C57BL/6 mice as the majority of transgenic mice are only available on this background. While PVM-specific CD8 T cell epitopes were recently described, so far no PVM-specific CD4 T cell epitopes have been identified within the C57BL/6 strain. Therefore, we set out to map H2-IAb-restricted epitopes along the PVM proteome. By means of in silico prediction and subsequent functional validation, we were able to identify a MHCII-restricted CD4 T cell epitope, corresponding to amino acids 37-47 in the PVM matrix protein (M37-47). Using this newly identified MHCII-restricted M37-47 epitope and a previously described MHCI-restricted N339-347 epitope, we generated peptide-loaded MHCII and MHCI tetramers and characterized the dynamics of virus-specific CD4 and CD8 T cell responses in vivo. The findings of this study can provide a basis for detailed investigation of T cell-mediated immune responses to PVM in a variety of genetically modified C57BL/6 mice.


CD4-Positive T-Lymphocytes/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/immunology , Immunity, Cellular , Murine pneumonia virus/immunology , Pneumonia, Viral/immunology , Amino Acid Sequence , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cells, Cultured , Epitope Mapping/methods , Epitopes, T-Lymphocyte/chemistry , Female , Histocompatibility Antigens Class II/immunology , Kinetics , Mice , Mice, Inbred C57BL , Pneumonia, Viral/virology
...